Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
1.
Nature ; 627(8004): 671-679, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448585

RESUMO

DNA and histone modifications combine into characteristic patterns that demarcate functional regions of the genome1,2. While many 'readers' of individual modifications have been described3-5, how chromatin states comprising composite modification signatures, histone variants and internucleosomal linker DNA are interpreted is a major open question. Here we use a multidimensional proteomics strategy to systematically examine the interaction of around 2,000 nuclear proteins with over 80 modified dinucleosomes representing promoter, enhancer and heterochromatin states. By deconvoluting complex nucleosome-binding profiles into networks of co-regulated proteins and distinct nucleosomal features driving protein recruitment or exclusion, we show comprehensively how chromatin states are decoded by chromatin readers. We find highly distinctive binding responses to different features, many factors that recognize multiple features, and that nucleosomal modifications and linker DNA operate largely independently in regulating protein binding to chromatin. Our online resource, the Modification Atlas of Regulation by Chromatin States (MARCS), provides in-depth analysis tools to engage with our results and advance the discovery of fundamental principles of genome regulation by chromatin states.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina , Proteínas Nucleares , Nucleossomos , Proteômica , Humanos , Sítios de Ligação , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , DNA/genética , DNA/metabolismo , Elementos Facilitadores Genéticos , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/metabolismo , Proteínas Nucleares/análise , Proteínas Nucleares/metabolismo , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteômica/métodos
2.
Mol Cell ; 82(6): 1169-1185.e7, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35202573

RESUMO

Polycomb group (PcG) proteins are essential for post-implantation development by depositing repressive histone modifications at promoters, mainly CpG islands (CGIs), of developmental regulator genes. However, promoter PcG marks are erased after fertilization and de novo established in peri-implantation embryos, coinciding with the transition from naive to primed pluripotency. Nevertheless, the molecular basis for this establishment remains unknown. In this study, we show that the expression of the long KDM2B isoform (KDM2BLF), which contains the demethylase domain, is specifically induced at peri-implantation and that its H3K36me2 demethylase activity is required for PcG enrichment at CGIs. Moreover, KDM2BLF interacts with BRG1/BRM-associated factor (BAF) and stabilizes BAF occupancy at CGIs for subsequent gain of accessibility, which precedes PcG enrichment. Consistently, KDM2BLF inactivation results in significantly delayed post-implantation development. In summary, our data unveil dynamic chromatin configuration of CGIs during exit from naive pluripotency and provide a conceptual framework for the spatiotemporal establishment of PcG functions.


Assuntos
Cromatina , Proteínas de Drosophila , Ilhas de CpG , Proteínas de Drosophila/metabolismo , Código das Histonas , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Regiões Promotoras Genéticas
3.
Mol Cell ; 81(8): 1749-1765.e8, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33657400

RESUMO

Acetylation of lysine 16 on histone H4 (H4K16ac) is catalyzed by histone acetyltransferase KAT8 and can prevent chromatin compaction in vitro. Although extensively studied in Drosophila, the functions of H4K16ac and two KAT8-containing protein complexes (NSL and MSL) are not well understood in mammals. Here, we demonstrate a surprising complex-dependent activity of KAT8: it catalyzes H4K5ac and H4K8ac as part of the NSL complex, whereas it catalyzes the bulk of H4K16ac as part of the MSL complex. Furthermore, we show that MSL complex proteins and H4K16ac are not required for cell proliferation and chromatin accessibility, whereas the NSL complex is essential for cell survival, as it stimulates transcription initiation at the promoters of housekeeping genes. In summary, we show that KAT8 switches catalytic activity and function depending on its associated proteins and that, when in the NSL complex, it catalyzes H4K5ac and H4K8ac required for the expression of essential genes.


Assuntos
Histona Acetiltransferases/genética , Homeostase/genética , Transcrição Gênica/genética , Acetilação , Animais , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/genética , Proliferação de Células/genética , Cromatina/genética , Células HEK293 , Células HeLa , Histonas/genética , Humanos , Células K562 , Lisina/genética , Masculino , Camundongos , Regiões Promotoras Genéticas/genética , Células THP-1
4.
Proc Natl Acad Sci U S A ; 121(8): e2311522121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38363863

RESUMO

Symbiosis receptor-like kinase SYMRK is required for root nodule symbiosis between legume plants and nitrogen-fixing bacteria. To understand symbiotic signaling from SYMRK, we determined the crystal structure to 1.95 Å and mapped the phosphorylation sites onto the intracellular domain. We identified four serine residues in a conserved "alpha-I" motif, located on the border between the kinase core domain and the flexible C-terminal tail, that, when phosphorylated, drives organogenesis. Substituting the four serines with alanines abolished symbiotic signaling, while substituting them with phosphorylation-mimicking aspartates induced the formation of spontaneous nodules in the absence of bacteria. These findings show that the signaling pathway controlling root nodule organogenesis is mediated by SYMRK phosphorylation, which may help when engineering this trait into non-legume plants.


Assuntos
Fabaceae , Nódulos Radiculares de Plantas , Fosforilação , Nódulos Radiculares de Plantas/metabolismo , Nodulação , Fosfotransferases/metabolismo , Simbiose/genética , Fabaceae/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Proteomics ; 24(3-4): e2200471, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38282202

RESUMO

Enzymatic catalysis is one of the fundamental processes that drives the dynamic landscape of post-translational modifications (PTMs), expanding the structural and functional diversity of proteins. Here, we assessed enzyme specificity using a top-down ion mobility spectrometry (IMS) and tandem mass spectrometry (MS/MS) workflow. We successfully applied trapped IMS (TIMS) to investigate site-specific N-ε-acetylation of lysine residues of full-length histone H4 catalyzed by histone lysine acetyltransferase KAT8. We demonstrate that KAT8 exhibits a preference for N-ε-acetylation of residue K16, while also adding acetyl groups on residues K5 and K8 as the first degree of acetylation. Achieving TIMS resolving power values of up to 300, we fully separated mono-acetylated regioisomers (H4K5ac, H4K8ac, and H4K16ac). Each of these separated regioisomers produce unique MS/MS fragment ions, enabling estimation of their individual mobility distributions and the exact localization of the N-ε-acetylation sites. This study highlights the potential of top-down TIMS-MS/MS for conducting enzymatic assays at the intact protein level and, more generally, for separation and identification of intact isomeric proteoforms and precise PTM localization.


Assuntos
Espectrometria de Mobilidade Iônica , Espectrometria de Massas em Tandem , Espectrometria de Mobilidade Iônica/métodos , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação
7.
Anal Chem ; 96(6): 2318-2326, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38301112

RESUMO

Ion mobility spectrometry (IMS) coupled to mass spectrometry (MS) has become a versatile tool to fractionate complex mixtures, distinguish structural isomers, and elucidate molecular geometries. Along with the whole MS field, IMS/MS advances to ever larger species. A topical proteomic problem is the discovery and characterization of d-amino acid-containing peptides (DAACPs) that are critical to neurotransmission and toxicology. Both linear IMS and FAIMS previously disentangled d/l epimers with up to ∼30 residues. In the first study using all three most powerful IMS methodologies─trapped IMS, cyclic IMS, and FAIMS─we demonstrate baseline resolution of the largest known d/l peptides (CHH from Homarus americanus with 72 residues) with a dynamic range up to 100. This expands FAIMS analyses of isomeric modified peptides, especially using hydrogen-rich buffers, to the ∼50-100 residue range of small proteins. The spectra for d and l are unprecedentedly strikingly similar except for a uniform shift of the separation parameter, indicating the conserved epimer-specific structural elements across multiple charge states and conformers. As the interepimer resolution tracks the average for smaller DAACPs, the IMS approaches could help search for yet larger DAACPs. The a priori method to calibrate cyclic (including multipass) IMS developed here may be broadly useful.


Assuntos
Peptídeos , Proteômica , Peptídeos/química , Espectrometria de Massas/métodos , Proteínas , Espectrometria de Mobilidade Iônica , Aminoácidos/química
8.
Nucleic Acids Res ; 50(17): 9705-9723, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36095123

RESUMO

Trypanosomes diverged from the main eukaryotic lineage about 600 million years ago, and display some unusual genomic and epigenetic properties that provide valuable insight into the early processes employed by eukaryotic ancestors to regulate chromatin-mediated functions. We analysed Trypanosoma brucei core histones by high mass accuracy middle-down mass spectrometry to map core histone post-translational modifications (PTMs) and elucidate cis-histone combinatorial PTMs (cPTMs). T. brucei histones are heavily modified and display intricate cPTMs patterns, with numerous hypermodified cPTMs that could contribute to the formation of non-repressive euchromatic states. The Trypanosoma brucei H2A C-terminal tail is hyperacetylated, containing up to five acetylated lysine residues. MNase-ChIP-seq revealed a striking enrichment of hyperacetylated H2A at Pol II transcription start regions, and showed that H2A histones that are hyperacetylated in different combinations localised to different genomic regions, suggesting distinct epigenetic functions. Our genomics and proteomics data provide insight into the complex epigenetic mechanisms used by this parasite to regulate a genome that lacks the transcriptional control mechanisms found in later-branched eukaryotes. The findings further demonstrate the complexity of epigenetic mechanisms that were probably shared with the last eukaryotic common ancestor.


Assuntos
Histonas/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei , Cromatina/genética , Código das Histonas , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
9.
Nucleic Acids Res ; 50(9): 5014-5028, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35489065

RESUMO

The heterodimeric histone chaperone FACT, consisting of SSRP1 and SPT16, contributes to dynamic nucleosome rearrangements during various DNA-dependent processes including transcription. In search of post-translational modifications that may regulate the activity of FACT, SSRP1 and SPT16 were isolated from Arabidopsis cells and analysed by mass spectrometry. Four acetylated lysine residues could be mapped within the basic C-terminal region of SSRP1, while three phosphorylated serine/threonine residues were identified in the acidic C-terminal region of SPT16. Mutational analysis of the SSRP1 acetylation sites revealed only mild effects. However, phosphorylation of SPT16 that is catalysed by protein kinase CK2, modulates histone interactions. A non-phosphorylatable version of SPT16 displayed reduced histone binding and proved inactive in complementing the growth and developmental phenotypes of spt16 mutant plants. In plants expressing the non-phosphorylatable SPT16 version we detected at a subset of genes enrichment of histone H3 directly upstream of RNA polymerase II transcriptional start sites (TSSs) in a region that usually is nucleosome-depleted. This suggests that some genes require phosphorylation of the SPT16 acidic region for establishing the correct nucleosome occupancy at the TSS of active genes.


Assuntos
Arabidopsis , Chaperonas de Histonas , Nucleossomos , Sítio de Iniciação de Transcrição , Arabidopsis/genética , Arabidopsis/metabolismo , Cromatina/genética , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Fosforilação , RNA Polimerase II/metabolismo , Fatores de Elongação da Transcrição/metabolismo
10.
Int J Mol Sci ; 25(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891986

RESUMO

Food allergies mediated by specific IgE (sIgE) have a significant socioeconomic impact on society. Evaluating the IgE cross-reactivity between allergens from different allergen sources can enable the better management of these potentially life-threatening adverse reactions to food proteins and enhance food safety. A novel banana fruit allergen, S-adenosyl-L-homocysteine hydrolase (SAHH), has been recently identified and its recombinant homolog was heterologously overproduced in E. coli. In this study, we performed a search in the NCBI (National Center for Biotechnology Information) for SAHH homologs in ryegrass, latex, and kiwifruit, all of which are commonly associated with pollen-latex-fruit syndrome. In addition, Western immunoblot analysis was utilized to identify the cross-reactive IgE to banana SAHH in the sera of patients with a latex allergy, kiwifruit allergy, and ryegrass allergy. ClustalOmega analysis showed more than 92% amino acid sequence identity among the banana SAHH homologs in ryegrass, latex, and kiwifruit. In addition to five B-cell epitopes, in silico analysis predicted eleven T-cell epitopes in banana SAHH, seventeen in kiwifruit SAHH, twelve in ryegrass SAHH, and eight in latex SAHH, which were related to the seven-allele HLA reference set (HLA-DRB1*03:01, HLA-DRB1*07:01, HLA-DRB1*15:01, HLA-DRB3*01:01, HLA-DRB3*02:02, HLA-DRB4*01:01, HLA-DRB5*01:01). Four T-cell epitopes were identical in banana and kiwifruit SAHH (positions 328, 278, 142, 341), as well as banana and ryegrass SAHH (positions 278, 142, 96, and 341). All four SAHHs shared two T-cell epitopes (positions 278 and 341). In line with the high amino acid sequence identity and B-cell epitope homology among the analyzed proteins, the cross-reactive IgE to banana SAHH was detected in three of three latex-allergic patients, five of six ryegrass-allergic patients, and two of three kiwifruit-allergic patients. Although banana SAHH has only been studied in a small group of allergic individuals, it is a novel cross-reactive food allergen that should be considered when testing for pollen-latex-fruit syndrome.


Assuntos
Actinidia , Alérgenos , Reações Cruzadas , Hipersensibilidade Alimentar , Imunoglobulina E , Látex , Musa , Humanos , Reações Cruzadas/imunologia , Hipersensibilidade Alimentar/imunologia , Alérgenos/imunologia , Alérgenos/genética , Musa/imunologia , Musa/genética , Imunoglobulina E/imunologia , Actinidia/imunologia , Feminino , Látex/imunologia , Masculino , Proteínas de Plantas/imunologia , Proteínas de Plantas/genética , Adulto , Antígenos de Plantas/imunologia , Antígenos de Plantas/genética , Sequência de Aminoácidos , Epitopos de Linfócito T/imunologia , Pessoa de Meia-Idade , Adolescente , Criança , Adulto Jovem
11.
Anal Chem ; 95(2): 784-791, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36562749

RESUMO

Continuing advances in proteomics highlight the ubiquity and biological importance of proteoforms─proteins with varied sequence, splicing, or distribution of post-translational modifications (PTMs). The preeminent example is histones, where the PTM pattern encodes the combinatorial language controlling the DNA transcription central to life. While the proteoforms with distinct PTM compositions are distinguishable by mass, the isomers with permuted PTMs commonly coexisting in cells generally require separation before mass-spectrometric (MS) analyses. That was accomplished on the bottom-up and middle-down levels using chromatography or ion mobility spectrometry (IMS), but proteolytic digestion obliterates the crucial PTM connectivity information. Here, we demonstrate baseline IMS resolution of intact isomeric proteoforms, specifically the acetylated H4 histones (11.3 kDa). The proteoforms with a single acetyl moiety on five alternative lysine residues (K5, K8, K12, K16, K20) known for distinct functionalities in vivo were constructed by two-step native chemical ligation and separated using trapped IMS at the resolving power up to 350 on the Bruker TIMS/ToF platform. Full resolution for several pairs was confirmed using binary mixtures and by unique fragments in tandem MS employing collision-induced dissociation. This novel capability for top-down proteoform characterization is poised to open major new avenues in proteomics and epigenetics.


Assuntos
Histonas , Espectrometria de Massas em Tandem , Histonas/química , Espectrometria de Massas em Tandem/métodos , Processamento de Proteína Pós-Traducional , Proteólise , Proteômica/métodos
12.
Anal Chem ; 95(29): 11141-11148, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37434406

RESUMO

Unambiguous identification of distinct proteoforms and their biological functions is a significant analytical challenge due to the many combinations of post-translational modifications (PTM) that generate isomeric proteoforms. Resulting chimeric tandem mass spectra hinder detailed structural characterization of individual proteoforms for mixtures with more than two isomers. Large isomeric peptides and intact isomeric proteins are extremely difficult to distinguish with traditional chromatographic separation methods. Gas-phase ion separation techniques such as ion mobility spectrometry (IMS) methods now offer high resolving power that may enable separation of isomeric biomolecules, such as peptides and proteins. We explored novel high-resolution cyclic ion mobility spectrometry (cIM) combined with an electro-magnetostatic cell for "on-the-fly" electron capture dissociation (ECD) for separation and sequencing of large isomeric peptides. We demonstrate the effectiveness of this approach on ternary mixtures of mono- and trimethylated isomers of histone H3 N-tails (∼5.4 kDa), achieving a complete separation of these isomers with an average resolving power of ∼400 and a resolution of 1.5 and with nearly 100% amino acid sequence coverage. Our results demonstrate the potential of the cIM-MS/MS(ECD) technology to enhance middle-down and top-down proteomics workflows, thereby facilitating the identification of near-identical proteoforms with essential biological functions in complex mixtures.


Assuntos
Elétrons , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Peptídeos/análise , Histonas/química , Sequência de Aminoácidos
13.
Mol Ther ; 30(4): 1661-1674, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-34400330

RESUMO

Emerging clinical data show that three ceramide molecules, Cer d18:1/16:0, Cer d18:1/24:1, and Cer d18:1/24:0, are biomarkers of a fatal outcome in patients with cardiovascular disease. This finding raises basic questions about their metabolic origin, their contribution to disease pathogenesis, and the utility of targeting the underlying enzymatic machinery for treatment of cardiometabolic disorders. Here, we outline the development of a potent N-acetylgalactosamine-conjugated antisense oligonucleotide engineered to silence ceramide synthase 2 specifically in hepatocytes in vivo. We demonstrate that this compound reduces the ceramide synthase 2 mRNA level and that this translates into efficient lowering of protein expression and activity as well as Cer d18:1/24:1 and Cer d18:1/24:0 levels in liver. Intriguingly, we discover that the hepatocyte-specific antisense oligonucleotide also triggers a parallel modulation of blood plasma ceramides, revealing that the biomarkers predictive of cardiovascular death are governed by ceramide biosynthesis in hepatocytes. Our work showcases a generic therapeutic framework for targeting components of the ceramide enzymatic machinery to disentangle their roles in disease causality and to explore their utility for treatment of cardiometabolic disorders.


Assuntos
Doenças Cardiovasculares , Oligonucleotídeos Antissenso , Oxirredutases , Biomarcadores , Doenças Cardiovasculares/genética , Ceramidas , Inativação Gênica , Hepatócitos , Humanos , Oligonucleotídeos Antissenso/genética , Oxirredutases/antagonistas & inibidores , Plasma
14.
Genes Dev ; 29(6): 585-90, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25792596

RESUMO

Epigenetic states defined by chromatin can be maintained through mitotic cell division. However, it remains unknown how histone-based information is transmitted. Here we combine nascent chromatin capture (NCC) and triple-SILAC (stable isotope labeling with amino acids in cell culture) labeling to track histone modifications and histone variants during DNA replication and across the cell cycle. We show that post-translational modifications (PTMs) are transmitted with parental histones to newly replicated DNA. Di- and trimethylation marks are diluted twofold upon DNA replication, as a consequence of new histone deposition. Importantly, within one cell cycle, all PTMs are restored. In general, new histones are modified to mirror the parental histones. However, H3K9 trimethylation (H3K9me3) and H3K27me3 are propagated by continuous modification of parental and new histones because the establishment of these marks extends over several cell generations. Together, our results reveal how histone marks propagate and demonstrate that chromatin states oscillate within the cell cycle.


Assuntos
Ciclo Celular/fisiologia , Epigênese Genética , Histonas/genética , Histonas/metabolismo , Processamento de Proteína Pós-Traducional/genética , Ciclo Celular/genética , Células Cultivadas , Cromatina/metabolismo , Metilação de DNA , Replicação do DNA , Humanos , Marcação por Isótopo , Estrutura Terciária de Proteína
15.
Mol Cell Proteomics ; 19(8): 1396-1408, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32424025

RESUMO

Statistical testing remains one of the main challenges for high-confidence detection of differentially regulated proteins or peptides in large-scale quantitative proteomics experiments by mass spectrometry. Statistical tests need to be sufficiently robust to deal with experiment intrinsic data structures and variations and often also reduced feature coverage across different biological samples due to ubiquitous missing values. A robust statistical test provides accurate confidence scores of large-scale proteomics results, regardless of instrument platform, experimental protocol and software tools. However, the multitude of different combinations of experimental strategies, mass spectrometry techniques and informatics methods complicate the decision of choosing appropriate statistical approaches. We address this challenge by introducing PolySTest, a user-friendly web service for statistical testing, data browsing and data visualization. We introduce a new method, Miss test, that simultaneously tests for missingness and feature abundance, thereby complementing common statistical tests by rescuing otherwise discarded data features. We demonstrate that PolySTest with integrated Miss test achieves higher confidence and higher sensitivity for artificial and experimental proteomics data sets with known ground truth. Application of PolySTest to mass spectrometry based large-scale proteomics data obtained from differentiating muscle cells resulted in the rescue of 10-20% additional proteins in the identified molecular networks relevant to muscle differentiation. We conclude that PolySTest is a valuable addition to existing tools and instrument enhancements that improve coverage and depth of large-scale proteomics experiments. A fully functional demo version of PolySTest and Miss test is available via http://computproteomics.bmb.sdu.dk/Apps/PolySTest.


Assuntos
Interpretação Estatística de Dados , Proteômica , Software , Diferenciação Celular , Humanos , Internet , Células Musculares/citologia , Contração Muscular , Músculo Estriado/fisiologia , Curva ROC
16.
Biochem J ; 478(3): 619-632, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33427868

RESUMO

Sulfur-containing amino acid residues function in antioxidative responses, which can be induced by the reactive oxygen species generated by excessive copper and hydrogen peroxide. In all Na+/K+, Ca2+, and H+ pumping P-type ATPases, a cysteine residue is present two residues upstream of the essential aspartate residue, which is obligatorily phosphorylated in each catalytic cycle. Despite its conservation, the function of this cysteine residue was hitherto unknown. In this study, we analyzed the function of the corresponding cysteine residue (Cys-327) in the autoinhibited plasma membrane H+-ATPase isoform 2 (AHA2) from Arabidopsis thaliana by mutagenesis and heterologous expression in a yeast host. Enzyme kinetics of alanine, serine, and leucine substitutions were identical with those of the wild-type pump but the sensitivity of the mutant pumps was increased towards copper and hydrogen peroxide. Peptide identification and sequencing by mass spectrometry demonstrated that Cys-327 was prone to oxidation. These data suggest that Cys-327 functions as a protective residue in the plasma membrane H+-ATPase, and possibly in other P-type ATPases as well.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Cisteína/química , ATPases Translocadoras de Prótons/química , Alquilação , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Arabidopsis/antagonistas & inibidores , Sequência Conservada , Cobre/metabolismo , Peróxido de Hidrogênio/metabolismo , Iodoacetamida/farmacologia , Cinética , Microssomos/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxirredução , Conformação Proteica , Domínios Proteicos , ATPases Translocadoras de Prótons/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
17.
Molecules ; 27(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35163848

RESUMO

Robust and easy-to-use NMR sensor technology is proposed for accurate, on-site determination of fat and protein contents in milk. The two parameters are determined using fast consecutive 1H and 35Cl low-field NMR experiments on milk samples upon the 1:1 addition of a low-cost contrast solution. Reliable and accurate measurements are obtained without tedious calibrations and the need for extensive database information and may readily be conducted by non-experts in production site environments. This enables on-site application at farms or dairies, or use in laboratories harvesting significant reductions in costs and time per analysis as compared to wet-chemistry analysis. The performance is demonstrated for calibration samples, various supermarket milk products, and raw milk samples, of which some were analyzed directly in the milking room. To illustrate the wide application range, the supermarket milk products included both conventionally/organically produced, lactose-free milk, cow's, sheep's and goat's milk, homogenized and unhomogenized milk, and a broad nutrient range (0.1-9% fat, 1-6% protein). Excellent agreement between NMR measurements and reference values, without corrections or changes in calibration for various products and during extensive periods of experiment conduction (4 months) demonstrates the robustness of the procedure and instrumentation. For the raw milk samples, correlations between NMR and IR, NMR and wet-chemistry, as well as IR and wet-chemistry results, show that NMR, in terms of accuracy, compares favorably with the other methods.


Assuntos
Gorduras/análise , Espectroscopia de Ressonância Magnética/métodos , Proteínas do Leite/análise , Leite/química , Animais , Bovinos , Feminino , Cabras , Ovinos
18.
J Proteome Res ; 20(1): 453-462, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33226818

RESUMO

Phosphopeptide enrichment is an essential step in large-scale, quantitative phosphoproteomics by mass spectrometry. Several phosphopeptide affinity enrichment techniques exist, such as immobilized metal-ion affinity chromatography (IMAC) and metal oxide affinity chromatography (MOAC). We compared zirconium(IV) IMAC (Zr-IMAC) magnetic microparticles to more commonly used titanium(IV) IMAC (Ti-IMAC) and TiO2 magnetic microparticles for phosphopeptide enrichment from simple and complex protein samples prior to phosphopeptide sequencing and characterization by mass spectrometry (liquid chromatography-tandem mass spectrometry, LC-MS/MS). We optimized sample-loading conditions to increase phosphopeptide recovery for Zr-IMAC-, Ti-IMAC-, and TiO2-based workflows by 22, 24, and 35%, respectively. The optimized protocol resulted in improved performance of Zr-IMAC over Ti-IMAC and TiO2 as well as high-performance liquid chromatography-based Fe(III)-IMAC with up to 23% more identified phosphopeptides. The different enrichment chemistries showed a high degree of overlap but also differences in phosphopeptide selectivity and complementarity. We conclude that Zr-IMAC improves phosphoproteome coverage and recommend that this complementary and scalable affinity enrichment method is more widely used in biological and biomedical studies of cell signaling and the search for biomarkers. Data are available via ProteomeXchange with identifier PXD018273.


Assuntos
Fosfopeptídeos , Zircônio , Cromatografia de Afinidade , Cromatografia Líquida , Compostos Férricos , Fenômenos Magnéticos , Espectrometria de Massas em Tandem , Titânio
19.
Anal Chem ; 93(8): 3857-3866, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33591162

RESUMO

Protein histidine phosphorylation (pHis) is involved in molecular signaling networks in bacteria, fungi, plants, and higher eukaryotes including mammals and is implicated in human diseases such as cancer. Detailed investigations of the pHis modification are hampered due to its acid-labile nature and consequent lack of tools to study this post-translational modification (PTM). We here demonstrate three molecularly imprinted polymer (MIP)-based reagents, MIP1-MIP3, for enrichment of pHis peptides and subsequent characterization by chromatography and mass spectrometry (LC-MS). The combination of MIP1 and ß-elimination provided some selectivity for improved detection of pHis peptides. MIP2 was amenable to larger pHis peptides, although with poor selectivity. Microsphere-based MIP3 exhibited improved selectivity and was amenable to enrichment and detection by LC-MS of pHis peptides in tryptic digests of protein mixtures. These MIP protocols do not involve any acidic solvents during sample preparation and enrichment, thus preserving the pHis modification. The presented proof-of-concept results will lead to new protocols for highly selective enrichment of labile protein phosphorylations using molecularly imprinted materials.


Assuntos
Histidina , Impressão Molecular , Animais , Cromatografia Líquida , Humanos , Polímeros Molecularmente Impressos , Peptídeos , Proteínas
20.
Anal Chem ; 93(27): 9575-9582, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34170114

RESUMO

Comprehensive characterization of post-translationally modified histone proteoforms is challenging due to their high isobaric and isomeric content. Trapped ion mobility spectrometry (TIMS), implemented on a quadrupole/time-of-flight (Q-ToF) mass spectrometer, has shown great promise in discriminating isomeric complete histone tails. The absence of electron activated dissociation (ExD) in the current platform prevents the comprehensive characterization of unknown histone proteoforms. In the present work, we report for the first time the use of an electromagnetostatic (EMS) cell devised for nonergodic dissociation based on electron capture dissociation (ECD), implemented within a nESI-TIMS-Q-ToF mass spectrometer for the characterization of acetylated (AcK18 and AcK27) and trimethylated (TriMetK4, TriMetK9 and TriMetK27) complete histone tails. The integration of the EMS cell in a TIMS-q-TOF MS permitted fast mobility-selected top-down ECD fragmentation with near 10% efficiency overall. The potential of this coupling was illustrated using isobaric (AcK18/TriMetK4) and isomeric (AcK18/AcK27 and TriMetK4/TriMetK9) binary H3 histone tail mixtures, and the H3.1 TriMetK27 histone tail structural diversity (e.g., three IMS bands at z = 7+). The binary isobaric and isomeric mixtures can be separated in the mobility domain with RIMS > 100 and the nonergodic ECD fragmentation permitted the PTM localization (sequence coverage of ∼86%). Differences in the ECD patterns per mobility band of the z = 7+ H3 TriMetK27 molecular ions suggested that the charge location is responsible for the structural differences observed in the mobility domain. This coupling further enhances the structural toolbox with fast, high resolution mobility separations in tandem with nonergodic fragmentation for effective proteoform differentiation.


Assuntos
Elétrons , Espectrometria de Mobilidade Iônica , Diferenciação Celular , Íons , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA