Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 96(1): 33-40, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38113356

RESUMO

Urine is one of the most widely used biofluids in metabolomic studies because it can be collected noninvasively and is available in large quantities. However, it shows large heterogeneity in sample concentration and consequently requires normalization to reduce unwanted variation and extract meaningful biological information. Biological samples like urine are commonly measured with electrospray ionization (ESI) coupled to a mass spectrometer, producing data sets for positive and negative modes. Combining these gives a more complete picture of the total metabolites present in a sample. However, the effect of this data merging on subsequent data analysis, especially in combination with normalization, has not yet been analyzed. To address this issue, we conducted a neutral comparison study to evaluate the performance of eight postacquisition normalization methods under different data merging procedures using 1029 urine samples from the Food Chain plus (FoCus) cohort. Samples were measured with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). Normalization methods were evaluated by five criteria capturing the ability to remove sample concentration variation and preserve relevant biological information. Merging data after normalization was generally favorable for quality control (QC) sample similarity, sample classification, and feature selection for most of the tested normalization methods. Merging data after normalization and the usage of probabilistic quotient normalization (PQN) in a similar setting are generally recommended. Relying on a single analyte to capture sample concentration differences, like with postacquisition creatinine normalization, seems to be a less preferable approach, especially when data merging is applied.


Assuntos
Metabolômica , Humanos , Espectrometria de Massas/métodos , Metabolômica/métodos , Creatinina/urina
2.
Eur J Epidemiol ; 37(10): 1087-1105, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36245062

RESUMO

The Food Chain Plus (FoCus) cohort was launched in 2011 for population-based research related to metabolic inflammation. To characterize this novel pathology in a comprehensive manner, data collection included multiple omics layers such as phenomics, microbiomics, metabolomics, genomics, and metagenomics as well as nutrition profiling, taste perception phenotyping and social network analysis. The cohort was set-up to represent a Northern German population of the Kiel region. Two-step recruitment included the randomised enrolment of participants via residents' registration offices and via the Obesity Outpatient Centre of the University Medical Center Schleswig-Holstein (UKSH). Hence, both a population- and metabolic inflammation- based cohort was created. In total, 1795 individuals were analysed at baseline. Baseline data collection took place between 2011 and 2014, including 63% females and 37% males with an age range of 18-83 years. The median age of all participants was 52.0 years [IQR: 42.5; 63.0 years] and the median baseline BMI in the study population was 27.7 kg/m2 [IQR: 23.7; 35.9 kg/m2]. In the baseline cohort, 14.1% of participants had type 2 diabetes mellitus, which was more prevalent in the subjects of the metabolic inflammation group (MIG; 31.8%). Follow-up for the assessment of disease progression, as well as the onset of new diseases with changes in subject's phenotype, diet or lifestyle factors is planned every 5 years. The first follow-up period was finished in 2020 and included 820 subjects.


Assuntos
Diabetes Mellitus Tipo 2 , Feminino , Humanos , Masculino , Estudos de Coortes , Diabetes Mellitus Tipo 2/epidemiologia , Cadeia Alimentar , Inflamação , Obesidade/epidemiologia , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais
3.
Planta Med ; 85(14-15): 1177-1186, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31450245

RESUMO

Comfrey is a medicinal plant, extracts of which are traditionally used for the treatment of painful inflammatory muscle and joint problems, because the plant contains allantoin and rosmarinic acid. However, its medicinal use is limited because of its toxic pyrrolizidine alkaloid (PA) content. PAs encompass more than 400 different compounds that have been identified from various plant lineages. To date, only the first pathway-specific enzyme, homospermidine synthase (HSS), has been characterized. HSS catalyzes the formation of homospermidine, which is exclusively incorporated into PAs. HSS has been recruited several times independently in various plant lineages during evolution by duplication of the gene encoding deoxyhypusine synthase (DHS), an enzyme of primary metabolism. Here, we describe the establishment of RNAi knockdown hairy root mutants of HSS in Symphytum officinale. A knockdown of HSS by 60 - 80% resulted in a significant reduction of homospermidine by ~ 86% and of the major PA components 7-acetylintermedine N-oxide and 3-acetylmyoscorpine N-oxide by approximately 60%. The correlation of reduced transcript levels of HSS with reduced levels of homospermidine and PAs provides in planta support for HSS being the central enzyme in PA biosynthesis. Furthermore, the generation of PA-depleted hairy roots might be a cost-efficient way for reducing toxic by-products that limit the medicinal applicability of S. officinale extracts.


Assuntos
Alquil e Aril Transferases/genética , Confrei/química , Regulação da Expressão Gênica de Plantas , Alcaloides de Pirrolizidina/metabolismo , Alquil e Aril Transferases/metabolismo , Confrei/genética , Mutação , Raízes de Plantas/química , Raízes de Plantas/genética , Plantas Medicinais , Alcaloides de Pirrolizidina/toxicidade , Interferência de RNA
4.
Front Mol Biosci ; 9: 968643, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353731

RESUMO

Milk oligosaccharides (MOS) and galactooligosaccharides (GOS) are associated with many benefits, including anti-microbial effects and immune-modulating properties. However, the cellular mechanisms of these are largely unknown. In this study, the effects of enriched GOS and MOS mixtures from caprine and bovine milk consisting mainly 6'-galactosyllactose, 3'-sialyllactose, and 6'-sialyllactose on Caco-2 cells were investigated, and the treatment-specific metabolomes were described. In the control, the cells were treated with a sugar mix consisting of one-third each of glucose, galactose and lactose. A local metabolomics workflow with pathway enrichment was established, which specifically addresses DI-FT-ICR-MS analyses and includes adaptations in terms of measurement technology and sample matrices. By including quality parameters, especially the isotope pattern, we increased the precision of annotation. The independence from online tools, the fast adaptability to changes in databases, and the specific adjustment to the measurement technology and biomaterial used, proved to be a great advantage. For the first time it was possible to find 71 active pathways in a Caco-2 cell experiment. These pathways were assigned to 12 main categories, with amino acid metabolism and carbohydrate metabolism being the most dominant categories in terms of the number of metabolites and metabolic pathways. Treatment of Caco-2 cells with high GOS and glucose contents resulted in significant effects on several metabolic pathways, whereas the MOS containing treatments resulted only for individual metabolites in significant changes. An effect based on bovine or caprine origin alone could not be observed. Thus, it was shown that MOS and GOS containing treatments can exert microbiome-independent effects on the metabolome of Caco-2 cells.

5.
Nutrients ; 14(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35565905

RESUMO

Vitamins and omega-3 fatty acids (Ω3FA) modulate periodontitis-associated inflammatory processes. The aim of the current investigation was to evaluate associations of oral nutrient intake and corresponding serum metabolites with clinical severity of human periodontitis. Within the Food Chain Plus cohort, 373 periodontitis patients­245 without (POL) and 128 with tooth loss (PWL)­were matched to 373 controls based on sex, smoking habit, age and body mass index in a nested case-control design. The amount of oral intake of vitamins and Ω3FAs was assessed from nutritional data using a Food Frequency Questionnaire. Oral intake and circulatory bioavailability of vitamins and Ω3FA serum metabolomics were compared, using ultra-high-resolution mass spectrometry. Periodontitis patients exhibited a significantly higher oral intake of vitamin C and Ω3FA Docosapentaenoic acid (p < 0.05) compared to controls. Nutritional intake of vitamin C was higher in PWL, while the intake of Docosapentaenoic acid was increased in POL (p < 0.05) compared to controls. In accordance, serum levels of Docosapentaenoic acid were also increased in POL (p < 0.01) compared to controls. Vitamin C and the Ω3FA Docosapentaenoic acid might play a role in the pathophysiology of human periodontitis. Further studies on individualized nutritional intake and periodontitis progression and therapy are necessary.


Assuntos
Ácidos Graxos Ômega-3 , Periodontite , Ácido Ascórbico , Estudos de Casos e Controles , Humanos , Periodontite/metabolismo , Vitaminas
6.
Nutrients ; 14(11)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35684151

RESUMO

BACKGROUND: Alongside metabolic diseases (esp. obesity), allergic disorders are becoming increasingly prevalent. Since both obesity and allergies are highly impacted by environmental determinants, with this study we assessed the potential link between metabolic implications and two distinct types of allergies. METHODS: Using cross-sectional data from the German FoCus cohort, n = 385 allergy cases, either hay fever (=type I allergy, n = 183) or contact allergy (=type IV allergy, n = 202) were compared to age- and sex-matched healthy control subjects (1:1 ratio, in total n = 770) regarding their metabolic phenotype, diet, physical activity, sleep, gut microbial composition, and serum metabolite profile using suitable BMI-adjusted models. RESULTS: Obesity and metabolic alterations were found significantly more prevalent in subjects with allergies. In fact, this relation was more pronounced in contact allergy than hay fever. Subsequent BMI-adjusted analysis reveals particular importance of co-occurring hyperlipidaemia for both allergy types. For contact allergy, we revealed a strong association to the dietary intake of poly-unsaturated fatty acids, particularly α-linolenic acid, as well as the enrichment of the corresponding metabolic pathway. For hay fever, there were no major associations to the diet but to a lower physical activity level, shorter duration of sleep, and an altered gut microbial composition. Finally, genetic predisposition for hyperlipidaemia was associated to both contact allergy and hay fever. CONCLUSIONS: Reflected by higher allergy prevalence, our findings indicate an impaired immune response in obesity and hyperlipidaemia, which is differentially regulated in type I and type IV allergies by an unfavourable lifestyle constellation and subsequent microbial and metabolic dysfunctions.


Assuntos
Hiperlipidemias , Hipersensibilidade Tardia , Hipersensibilidade , Rinite Alérgica Sazonal , Estudos Transversais , Ingestão de Alimentos , Humanos , Hiperlipidemias/epidemiologia , Hipersensibilidade/epidemiologia , Obesidade/epidemiologia , Rinite Alérgica Sazonal/epidemiologia , Comportamento Sedentário
7.
Gut Microbes ; 14(1): 2057778, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35435797

RESUMO

Recent rodent microbiome experiments suggest that besides Akkermansia, Parasutterella sp. are important in type 2 diabetes and obesity development. In the present translational human study, we aimed to characterize Parasutterella in our European cross-sectional FoCus cohort (n = 1,544) followed by validation of the major results in an independent Canadian cohort (n = 438). In addition, we examined Parasutterella abundance in response to a weight loss intervention (n = 55). Parasutterella was positively associated with BMI and type 2 diabetes independently of the reduced microbiome α/ß diversity and low-grade inflammation commonly found in obesity. Nutritional analysis revealed a positive association with the dietary intake of carbohydrates but not with fat or protein consumption. Out of 126 serum metabolites differentially detectable by untargeted HPLC-based MS-metabolomics, L-cysteine showed the strongest reduction in subjects with high Parasutterella abundance. This is of interest, since Parasutterella is a known high L-cysteine consumer and L-cysteine is known to improve blood glucose levels in rodents. Furthermore, metabolic network enrichment analysis identified an association of high Parasutterella abundance with the activation of the human fatty acid biosynthesis pathway suggesting a mechanism for body weight gain. This is supported by a significant reduction of the Parasutterella abundance during our weight loss intervention. Together, these data indicate a role for Parasutterella in human type 2 diabetes and obesity, whereby the link to L-cysteine might be relevant in type 2 diabetes development and the link to the fatty acid biosynthesis pathway for body weight gain in response to a carbohydrate-rich diet in obesity development.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Canadá , Estudos Transversais , Cisteína , Carboidratos da Dieta , Ácidos Graxos , Humanos , Obesidade , Redução de Peso
8.
Front Immunol ; 11: 587895, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329569

RESUMO

The molecular foundation of chronic inflammatory diseases (CIDs) can differ markedly between individuals. As our understanding of the biochemical mechanisms underlying individual disease manifestations and progressions expands, new strategies to adjust treatments to the patient's characteristics will continue to profoundly transform clinical practice. Nutrition has long been recognized as an important determinant of inflammatory disease phenotypes and treatment response. Yet empirical work demonstrating the therapeutic effectiveness of patient-tailored nutrition remains scarce. This is mainly due to the challenges presented by long-term effects of nutrition, variations in inter-individual gastrointestinal microbiota, the multiplicity of human metabolic pathways potentially affected by food ingredients, nutrition behavior, and the complexity of food composition. Historically, these challenges have been addressed in both human studies and experimental model laboratory studies primarily by using individual nutrition data collection in tandem with large-scale biomolecular data acquisition (e.g. genomics, metabolomics, etc.). This review highlights recent findings in the field of precision nutrition and their potential implications for the development of personalized treatment strategies for CIDs. It emphasizes the importance of computational approaches to integrate nutritional information into multi-omics data analysis and to predict which molecular mechanisms may explain how nutrients intersect with disease pathways. We conclude that recent findings point towards the unexhausted potential of nutrition as part of personalized medicine in chronic inflammation.


Assuntos
Inflamação/dietoterapia , Terapia Nutricional , Medicina de Precisão , Animais , Biomarcadores , Doença Crônica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA