Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 12(9): e2202076, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36579651

RESUMO

Rapid, sensitive, specific, and user-friendly microRNA (miRNA) assays are in high demand for point-of-care diagnosis. Target-catalyzed toehold-mediated strand displacement (TMSD) has received increasing attention as an enzyme-free molecular tool for DNA detection. However, the application of TMSD to miRNA targets is challenging because relatively weak DNA/RNA hybridization leads to failure in the subtle kinetic control of multiple hybridization steps. Here, a simple method is presented for miRNA assay based on the one-pot self-assembly of Y-shaped DNAs with streptavidin via an miRNA-catalyzed TMSD cascade reaction. A single miRNA catalyzes the opening cycle of DNA hairpin loops to generate multiple Y-shaped DNAs carrying biotin and a quencher at the end of their arms. Introducing a single base-pair mismatch near the toehold facilitates RNA-triggered strand displacement while barely disturbing nonspecific reactions. The Y-shaped DNAs are self-assembled with fluorescently labeled streptavidin (sAv), which produces nanoscale DNA-sAv nanogel particles mediating efficient Förster resonance energy transfer in their 3D network. The enhancing effect dramatically reduces the detection limit from the nanomolar level to the picomolar level. This work proves that TMSD-based DNA nanogel with a base-pair mismatch incorporated to a hairpin structure is a promising approach towards sensitive and accurate miRNA assay.


Assuntos
Técnicas Biossensoriais , MicroRNAs , MicroRNAs/genética , Estreptavidina , Nanogéis , DNA/química , Catálise , Técnicas Biossensoriais/métodos
2.
Biosens Bioelectron ; 182: 113110, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33812283

RESUMO

Fast, sensitive, specific, and user-friendly DNA assay is a key technique for the next generation point-of-care molecular diagnosis. However, high-cost, time-consuming, and complicated enzyme-based DNA amplification step is essential to achieve high sensitivity. Herein, a short target DNA-catalyzed formation of quantum dot (QD)-DNA hydrogel is proposed as a new DNA assay platform satisfying the above requirements. A single-stranded target DNA catalyzes the opening cycle of DNA hairpin loops, which are quickly self-assembled with DNA-functionalized QDs to generate QD-DNA hydrogel. The three-dimensional hydrogel network allows efficient resonance energy transfer, dramatically lowering the limit of detection down to ~6 fM without enzymatic DNA amplification. The QD-DNA hydrogel also enables a rapid detection (1 h) with high specificity even for a single-base mismatch. The clinical applicability of the QD-DNA hydrogel is demonstrated for the Klebsiella pneumoniae carbapenemase gene, one of the key targets of drug-resistant pathogenic bacteria.


Assuntos
Técnicas Biossensoriais , Pontos Quânticos , Catálise , DNA/genética , Transferência Ressonante de Energia de Fluorescência , Hidrogéis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA