Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale ; 15(9): 4506-4514, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36753337

RESUMO

We demonstrate that oleyl phosphate ligand-stabilized iron oxide nanocubes as building blocks can be assembled into 2D supercrystalline mono- and multilayers on flat YSZ substrates within a few minutes using a simple spin-coating process. As a bottom-up process, the growth takes place in a layer-by-layer mode and therefore by tuning the spin-coating parameters, the exact number of deposited monolayers can be controlled. Furthermore, ex situ scanning electron and atomic force microscopy as well as X-ray reflectivity measurements give evidence that the choice of solvent allows the control of the lattice type of the final supercrystalline monolayers. This observation can be assigned to the different Hansen solubilities of the solvents used for the nanoparticle dispersion because it determines the size and morphology of the ligand shell surrounding the nanoparticle core. Here, by using toluene and chloroform as solvents, it can be controlled whether the resulting monolayers are ordered in a square or hexagonal supercrystalline lattice.

2.
Adv Mater ; 35(39): e2304621, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37437599

RESUMO

Corrosion is the main factor limiting the lifetime of metallic materials, and a fundamental understanding of the governing mechanism and surface processes is difficult to achieve since the thin oxide films at the metal-liquid interface governing passivity are notoriously challenging to study. In this work, a combination of synchrotron-based techniques and electrochemical methods is used to investigate the passive film breakdown of a Ni-Cr-Mo alloy, which is used in many industrial applications. This alloy is found to be active toward oxygen evolution reaction (OER), and the OER onset coincides with the loss of passivity and severe metal dissolution. The OER mechanism involves the oxidation of Mo4+ sites in the oxide film to Mo6+ that can be dissolved, which results in passivity breakdown. This is fundamentally different from typical transpassive breakdown of Cr-containing alloys where Cr6+ is postulated to be dissolved at high anodic potentials, which is not observed here. At high current densities, OER also leads to acidification of the solution near the surface, further triggering metal dissolution. The OER plays an important role in the mechanism of passivity breakdown of Ni-Cr-Mo alloys due to their catalytic activity, and this effect needs to be considered when studying the corrosion of catalytically active alloys.

3.
Nanoscale ; 15(38): 15768-15774, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37740389

RESUMO

Pattern fabrication by self-assembly of diblock copolymers is of significant interest due to the simplicity in fabricating complex structures. In particular, polystyrene-block-poly-4-vinylpyridine (PS-b-P4VP) is a fascinating base material as it forms an ordered micellar structure on silicon surfaces. In this work, silver (Ag) is applied using direct current magnetron sputter deposition and high-power impulse magnetron sputter deposition on an ordered micellar PS-b-P4VP layer. The fabricated hybrid materials are structurally analyzed by field emission scanning electron microscopy, atomic force microscopy, and grazing incidence small angle X-ray scattering. When applying simple aqueous posttreatment, the pattern is stable and reinforced by Ag clusters, making micellar PS-b-P4VP ordered layers ideal candidates for lithography.

4.
ACS Appl Mater Interfaces ; 15(6): 8770-8782, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36723177

RESUMO

We investigated the adsorption of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), the virus responsible for the current pandemic, on the surface of the model catalyst TiO2(101) using atomic force microscopy, transmission electron microscopy, fluorescence microscopy, and X-ray photoelectron spectroscopy, accompanied by density functional theory calculations. Three different methods were employed to inactivate the virus after it was loaded on the surface of TiO2(101): (i) ethanol, (ii) thermal, and (iii) UV treatments. Microscopic studies demonstrate that the denatured spike proteins and other proteins in the virus structure readsorb on the surface of TiO2 under thermal and UV treatments. The interaction of the virus with the surface of TiO2 was different for the thermally and UV treated samples compared to the sample inactivated via ethanol treatment. AFM and TEM results on the UV-treated sample suggested that the adsorbed viral particles undergo damage and photocatalytic oxidation at the surface of TiO2(101) which can affect the structural proteins of SARS-CoV-2 and denature the spike proteins in 30 min. The role of Pd nanoparticles (NPs) was investigated in the interaction between SARS-CoV-2 and TiO2(101). The presence of Pd NPs enhanced the adsorption of the virus due to the possible interaction of the spike protein with the NPs. This study is the first investigation of the interaction of SARS-CoV-2 with the surface of single crystalline TiO2(101) as a potential candidate for virus deactivation applications. Clarification of the interaction of the virus with the surface of semiconductor oxides will aid in obtaining a deeper understanding of the chemical processes involved in photoinactivation of microorganisms, which is important for the design of effective photocatalysts for air purification and self-cleaning materials.


Assuntos
COVID-19 , SARS-CoV-2 , Adsorção , Proteínas , Glicoproteína da Espícula de Coronavírus , Titânio/química
5.
Adv Sci (Weinh) ; 9(8): e2105432, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35289133

RESUMO

The synthesis of hierarchically porous materials usually requires complex experimental procedures, often based around extensive trial and error approaches. One common synthesis strategy is the sol-gel method, although the relation between synthesis parameters, material structure and function has not been widely explored. Here, in situ 2D hard X-ray ptychography (XRP) and 3D ptychographic X-ray computed tomography (PXCT) are applied to monitor the development of hierarchical porosity in Ni/Al2 O3 and Al2 O3 catalysts with connected meso- and macropore networks. In situ XRP allows to follow textural changes of a dried gel Ni/Al2 O3 sample as a function of temperature during calcination, activation and CO2 methanation reaction. Complementary PXCT studies on dried gel particles of Ni/Al2 O3 and Al2 O3 provide quantitative information on pore structure, size distribution, and shape with 3D spatial resolution approaching 50 nm, while identical particles are imaged ex situ before and after calcination. The X-ray imaging results are correlated with N2 -sorption, Hg porosimetry and He pycnometry pore characterization. Hard X-ray nanotomography is highlighted to derive fine structural details including tortuosity, branching nodes, and closed pores, which are relevant in understanding transport phenomena during chemical reactions. XRP and PXCT are enabling technologies to understand complex synthesis pathways of porous materials.

6.
Addit Manuf ; 35: 101322, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32835025

RESUMO

The deformations of isotropic and anisotropic Ti-6Al-4V columnar structures fabricated by additive manufacturing were extensively examined. The distinct texture and microstructure distributions were characterised. In situ X-ray diffraction measurements show different lattice activities resulting from the different microstructure distributions. Spatially resolved mapping revealed manufacturing-induced crystallite-orientation distributions that determine the deformation mechanisms. We propose a self-consistent model to correlate the multi-scale characteristics, from the anisotropic-texture-distribution microstructure to the bulk mechanical properties. We determined that basal and pyramidal slip activities were activated by tension deformation. The underlying additive-manufacturing-induced crystal plasticity plays a major role. We find that the texture development of the columnar structures and the distribution of crystallite orientation achieved by different processing conditions during additive manufacturing have important effects on the mechanical properties. The dominant deformation mode for the anisotropic Ti-6Al-4V columnar structure is basal slip, and that for the isotropic Ti-6Al-4V columnar structure is pyramidal slip. The difference may be important for determining the fatigue behaviour.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA