Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830318

RESUMO

Small extracellular vesicles isolated from urine (uEVs) are increasingly recognized as potential biomarkers. Meanwhile, different uEV preparation strategies exist. Conventionally, the performance of EV preparation methods is evaluated by single particle quantification, Western blot, and electron microscopy. Recently, we introduced imaging flow cytometry (IFCM) as a next-generation single EV analysis technology. Here, we analyzed uEV samples obtained with different preparation procedures using nanoparticle tracking analysis (NTA), semiquantitative Western blot, and IFCM. IFCM analyses demonstrated that urine contains a predominant CD9+ sEV population, which exceeds CD63+ and CD81+ sEV populations. Furthermore, we demonstrated that the storage temperature of urine samples negatively affects the recovery of CD9+ sEVs. Although overall reduced, the highest CD9+ sEV recovery was obtained from urine samples stored at -80 °C and the lowest from those stored at -20 °C. Upon comparing the yield of the different uEV preparations, incongruencies between NTA and IFCM data became apparent. Results obtained by both NTA and IFCM were consistent with Western blot analyses for EV marker proteins; however, NTA results correlated with the amount of the impurity marker uromodulin. Despite demonstrating that the combination of ultrafiltration and size exclusion chromatography appears as a reliable uEV preparation technique, our data challenge the soundness of traditional NTA for the evaluation of different EV preparation methods.


Assuntos
Vesículas Extracelulares/química , Citometria de Fluxo/métodos , Imagem Molecular/métodos , Urinálise/métodos , Adulto , Biomarcadores/urina , Cromatografia em Gel , Feminino , Voluntários Saudáveis , Humanos , Masculino , Nanopartículas/química , Nanopartículas/ultraestrutura , Tetraspanina 28/urina , Tetraspanina 29/urina , Tetraspanina 30/urina , Ultrafiltração , Urinálise/instrumentação , Urina/química , Uromodulina/urina
2.
J Am Soc Nephrol ; 22(7): 1286-96, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21719793

RESUMO

Paracrine signaling between podocytes and glomerular endothelial cells through vascular endothelial growth factor A (VEGFA) maintains a functional glomerular filtration barrier. Heparan sulfate proteoglycans (HSPGs), located on the cell surface or in the extracellular matrix, bind signaling molecules such as VEGFA and affect their local concentrations, but whether modulation of these moieties promotes normal crosstalk between podocytes and endothelial cells is unknown. Here, we found that the transcription factor Wilms' Tumor 1 (WT1) modulates VEGFA and FGF2 signaling by increasing the expression of the 6-O-endosulfatases Sulf1 and Sulf2, which remodel the heparan sulfate 6-O-sulfation pattern in the extracellular matrix. Mice deficient in both Sulf1 and Sulf2 developed age-dependent proteinuria as a result of ultrastructural abnormalities in podocytes and endothelial cells, a phenotype similar to that observed in children with WT1 mutations and in Wt1(+/-) mice. These kidney defects associated with a decreased distribution of VEGFA in the glomerular basement membrane and on endothelial cells. Collectively, these data suggest that WT1-dependent sulfatase expression plays a critical role in maintaining the glomerular filtration barrier by modulating the bioavailability of growth factors, thereby promoting normal crosstalk between podocytes and endothelial cells.


Assuntos
Glomérulos Renais/enzimologia , Sulfatases/metabolismo , Sulfotransferases/metabolismo , Proteínas WT1/metabolismo , Animais , Comunicação Celular , Fator 2 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Heterozigoto , Humanos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Mutação , Permeabilidade , Regiões Promotoras Genéticas , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Sci Rep ; 12(1): 12297, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853959

RESUMO

Podocytes are highly specialized cells playing a key role in the filtration function of the kidney. A damaged podocyte ultrastructure is associated with a reorganization of the actin cytoskeleton and accompanied with a loss of adhesion to the glomerular basement membrane leading to proteinuria in many forms of glomerular diseases, e.g. nephrotic syndrome. If the first-line therapy with glucocorticoids fails, alternative immunosuppressive agents are used, which are known to have the potential to stabilize the actin cytoskeleton. A new option for preventing relapses in steroid dependent nephrotic syndrome is the monoclonal antibody rituximab, which, in addition to its B-cell depleting effect, is assumed to have direct effects on podocytes. We here provide data on the non-immunological off-target effects of the immunosuppressant rituximab on podocyte structure and dynamics in an in vitro puromycin aminonucleoside model of podocyte injury. A conditionally immortalized human podocyte cell line was used. Differentiated podocytes were treated with puromycin aminonucleoside and rituximab. Our studies focussed on analyzing the structure of the actin cytoskeleton, cellular adhesion and apoptosis using immunofluorescence staining and protein biochemistry methods. Treatment with rituximab resulted in a stabilization of podocyte actin stress fibers in the puromycin aminonucleoside model, leading to an improvement in cell adhesion. A lower apoptosis rate was observed after parallel treatment with puromycin aminonucleoside and rituximab visualized by reduced nuclear fragmentation. Consistent with this data, Western-blot analyses demonstrated that rituximab directly affects the caspase pathways by inhibiting the activation of Caspases-8, -9 and -3, suggesting that rituximab may inhibit apoptosis. In conclusion, our results indicate an important role of the immunosuppressant rituximab in terms of stability and morphogenesis of podocytes, involving apoptosis pathways. This could help to improve therapeutical concepts for patients with proteinuria mediated by diseased podocytes.


Assuntos
Síndrome Nefrótica , Podócitos , Apoptose , Células Cultivadas , Humanos , Imunossupressores/metabolismo , Imunossupressores/farmacologia , Síndrome Nefrótica/induzido quimicamente , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/metabolismo , Podócitos/metabolismo , Proteinúria/metabolismo , Puromicina/farmacologia , Puromicina Aminonucleosídeo/metabolismo , Puromicina Aminonucleosídeo/farmacologia , Rituximab/metabolismo , Rituximab/farmacologia
4.
Front Med (Lausanne) ; 9: 953643, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341250

RESUMO

X-linked Alport syndrome (AS) caused by hemizygous disease-causing variants in COL4A5 primarily affects males. Females with a heterozygous state show a diverse phenotypic spectrum ranging from microscopic hematuria to end-stage kidney disease (ESKD) and extrarenal manifestations. In other X-linked diseases, skewed X-inactivation leads to preferential silencing of one X-chromosome and thus can determine the phenotype in females. We aimed to show a correlation between X-inactivation in blood and urine-derived renal cells and clinical phenotype of females with a heterozygous disease-causing variant in COL4A5 compared to healthy controls. A total of 56 females with a heterozygous disease-causing COL4A5 variant and a mean age of 31.6 ± 18.3 SD years were included in this study. A total of 94% had hematuria, 62% proteinuria >200 mg/day, yet only 7% had decreased eGFR. Using human androgen receptor assay X-inactivation was examined in blood cells of all 56 individuals, in urine-derived cells of 27 of these individuals and in all healthy controls. X-inactivation did not correlate with age of first manifestation, proteinuria or eGFR neither in blood, nor in urine. The degree of X-inactivation showed a moderate association with age, especially in urine-derived cells of the patient cohort (rho = 0.403, p = 0.037). Determination of X-inactivation allelity revealed a shift of X-inactivation toward the COL4A5 variant bearing allele. This is the first study examining X-inactivation of urine-derived cells from female individuals with AS. A correlation between phenotype and X-inactivation could not be observed suspecting other genetic modifiers shaping the phenotype in female individuals with AS. The association of X-inactivation with age in urine-derived cells suggests an escape-mechanism inactivating the COL4A5 variant carrying allele in female individuals with AS.

5.
PLoS One ; 10(9): e0137043, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26331477

RESUMO

BACKGROUND: Glomerular podocytes are highly differentiated cells that are key components of the kidney filtration units. The podocyte cytoskeleton builds the basis for the dynamic podocyte cytoarchitecture and plays a central role for proper podocyte function. Recent studies implicate that immunosuppressive agents including the mTOR-inhibitor everolimus have a protective role directly on the stability of the podocyte actin cytoskeleton. In contrast, a potential stabilization of microtubules by everolimus has not been studied so far. METHODS: To elucidate mechanisms underlying mTOR-inhibitor mediated cytoskeletal rearrangements, we carried out microarray gene expression studies to identify target genes and corresponding pathways in response to everolimus. We analyzed the effect of everolimus in a puromycin aminonucleoside experimental in vitro model of podocyte injury. RESULTS: Upon treatment with puromycin aminonucleoside, microarray analysis revealed gene clusters involved in cytoskeletal reorganization, cell adhesion, migration and extracellular matrix composition to be affected. Everolimus was capable of protecting podocytes from injury, both on transcriptional and protein level. Rescued genes included tubulin beta 2B class IIb (TUBB2B) and doublecortin domain containing 2 (DCDC2), both involved in microtubule structure formation in neuronal cells but not identified in podocytes so far. Validating gene expression data, Western-blot analysis in cultured podocytes demonstrated an increase of TUBB2B and DCDC2 protein after everolimus treatment, and immunohistochemistry in healthy control kidneys confirmed a podocyte-specific expression. Interestingly, Tubb2bbrdp/brdp mice revealed a delay in glomerular podocyte development as showed by podocyte-specific markers Wilm's tumour 1, Podocin, Nephrin and Synaptopodin. CONCLUSIONS: Taken together, our study suggests that off-target, non-immune mediated effects of the mTOR-inhibitor everolimus on the podocyte cytoskeleton might involve regulation of microtubules, revealing a potential novel role of TUBB2B and DCDC2 in glomerular podocyte development.


Assuntos
Everolimo/farmacologia , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/efeitos dos fármacos , Podócitos/efeitos dos fármacos , Tubulina (Proteína)/genética , Animais , Adesão Celular , Linhagem Celular Transformada , Humanos , Rim/metabolismo , Camundongos , Camundongos Mutantes , Microtúbulos/metabolismo , Podócitos/metabolismo , Transcriptoma
6.
PLoS One ; 8(2): e55980, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23418489

RESUMO

Podocytes are highly differentiated kidney cells playing an important role in maintaining the glomerular filtration barrier. Particularly, the integrity of the actin cytoskeleton is crucial as cytoskeletal damage associated with foot process effacement and loss of slit diaphragms constitutes a major aspect of proteinuria. Previously, the mammalian target of rapamycin (mTOR) was linked to actin regulation and aberrant activity of the kinase was associated with renal disease. In this study, actin-related effects of mTOR inhibition by the immunosuppressant everolimus (EV) were investigated in human podocytes using an in vitro model of puromycin aminonucleoside (PAN) induced proteinuria. EV substantially recovered aberrant podocyte behavior by re-establishing a stationary phenotype with decreased migration efficiency, enhanced cell adhesion and recovery of actin stress fibers. Biochemical studies revealed substantial increase in the activity of RhoA and the effector pathway Rho-associated protein kinase (ROCK) and myosin light chain (MLC) by EV, all known regulators of stress fiber generation. Taken together, we show for the first time cytoskeleton stabilizing effects of the mTOR inhibitor EV and establish RhoA signaling as a key mediator in this process.


Assuntos
Citoesqueleto/efeitos dos fármacos , Imunossupressores/farmacologia , Podócitos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sirolimo/análogos & derivados , Proteína rhoA de Ligação ao GTP/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Células Cultivadas , Citoesqueleto/metabolismo , Everolimo , Humanos , Podócitos/metabolismo , Sirolimo/farmacologia , Fibras de Estresse/efeitos dos fármacos , Fibras de Estresse/metabolismo
7.
PLoS One ; 6(11): e27457, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22096576

RESUMO

CONTEXT/OBJECTIVE: Epidemiological studies have demonstrated that women have a significantly better prognosis in chronic renal diseases compared to men. This suggests critical influences of gender hormones on glomerular structure and function. We examined potential direct protective effects of estradiol on podocytes. METHODS: Expression of estrogen receptor alpha (ERα) was examined in podocytes in vitro and in vivo. Receptor localization was shown using Western blot of separated nuclear and cytoplasmatic protein fractions. Podocytes were treated with Puromycin aminonucleoside (PAN, apoptosis induction), estradiol, or both in combination. Apoptotic cells were detected with Hoechst nuclear staining and Annexin-FITC flow cytometry. To visualize mitochondrial membrane potential depolarization as an indicator for apoptosis, cells were stained with tetramethyl rhodamine methylester (TMRM). Estradiol-induced phosphorylation of ERK1/2 and p38 MAPK was examined by Western blot. Glomeruli of ERα knock-out mice and wild-type controls were analysed by histomorphometry and immunohistochemistry. RESULTS: ERα was consistently expressed in human and murine podocytes. Estradiol stimulated ERα protein expression, reduced PAN-induced apoptosis in vitro by 26.5±24.6% or 56.6±5.9% (flow cytometry or Hoechst-staining, respectively; both p<0.05), and restored PAN-induced mitochondrial membrane potential depolarization. Estradiol enhanced ERK1/2 phosphorylation. In ERα knockout mice, podocyte number was reduced compared to controls (female/male: 80/86 vs. 132/135 podocytes per glomerulus, p<0.05). Podocyte volume was enhanced in ERα knockout mice (female/male: 429/371 µm(3) vs. 264/223 µm(3) in controls, p<0.05). Tgfß1 and collagen type IV expression were increased in knockout mice, indicating glomerular damage. CONCLUSIONS: Podocytes express ERα, whose activation leads to a significant protection against experimentally induced apoptosis. Possible underlying mechanisms include stabilization of mitochondrial membrane potential and activation of MAPK signalling. Characteristic morphological changes indicating glomerulopathy in ERα knock-out mice support the in vivo relevance of the ERα for podocyte viability and function. Thus, our findings provide a novel model for the protective influence of female gender on chronic glomerular diseases.


Assuntos
Apoptose/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Podócitos/citologia , Podócitos/metabolismo , Animais , Apoptose/genética , Western Blotting , Células Cultivadas , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Glomérulos Renais/metabolismo , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Podócitos/efeitos dos fármacos , Puromicina Aminonucleosídeo/farmacologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
J Am Soc Nephrol ; 18(3): 719-29, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17267748

RESUMO

Individuals with Denys-Drash syndrome (DDS) develop diffuse mesangial sclerosis, ultimately leading to renal failure. The disease is caused by mutations that affect the zinc finger structure of the Wilms' tumor protein (WT1), but the mechanisms whereby these mutations result in glomerulosclerosis remain largely obscure. How WT1 regulates genes is likely to be complex, because it has multiple splice forms, binds both DNA and RNA, and associates with spliceosomes. Herein is described that in DDS podocytes, the ratio of both WT1 +KTS isoforms C to D differs considerably from that of normal child and adult control podocytes and more closely resembles fetal profiles. Aside from the delay in podocyte maturation, DDS glomeruli show swollen endothelial cells, reminiscent of endotheliosis, together with incompletely fused capillary basement membranes; a dramatic decrease in collagen alpha4(IV) and laminin beta2 chains; and the presence of immature or activated mesangial cells that express alpha-smooth muscle actin. Because appropriate vascular endothelial growth factor A (VEGF-A) expression is known to be essential for the development and maintenance of glomerular architecture and function, this article addresses the question of whether VEGF-A expression is deregulated in DDS. The data presented here show that DDS podocytes express high levels of the proangiogenic isoform VEGF165, but completely lack the inhibitory isoform VEGF165b. The VEGF165/VEGF165b ratio in DDS resembles that of fetal S-shaped bodies, rather than that of normal child or adult control subjects. The alteration in VEGF-A expression presented here may provide a mechanistic insight into the pathogenesis of DDS.


Assuntos
Síndrome de Denys-Drash/metabolismo , Glomérulos Renais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas WT1/metabolismo , Síndrome de Denys-Drash/genética , Síndrome de Denys-Drash/patologia , Endotélio/metabolismo , Membrana Basal Glomerular/metabolismo , Humanos , Glomérulos Renais/patologia , Células Mesangiais/metabolismo , Mutação , Podócitos/metabolismo , Isoformas de Proteínas/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Proteínas WT1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA