Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
NMR Biomed ; : e5150, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553824

RESUMO

Magnetic susceptibility imaging may provide valuable information about chemical composition and microstructural organization of tissue. However, its estimation from the MRI signal phase is particularly difficult as it is sensitive to magnetic tissue properties ranging from the molecular to the macroscopic scale. The MRI Larmor frequency shift measured in white matter (WM) tissue depends on the myelinated axons and other magnetizable sources such as iron-filled ferritin. We have previously derived the Larmor frequency shift arising from a dense medium of cylinders with scalar susceptibility and arbitrary orientation dispersion. Here, we extend our model to include microscopic WM susceptibility anisotropy as well as spherical inclusions with scalar susceptibility to represent subcellular structures, biologically stored iron, and so forth. We validate our analytical results with computer simulations and investigate the feasibility of estimating susceptibility using simple iterative linear least squares without regularization or preconditioning. This is done in a digital brain phantom synthesized from diffusion MRI measurements of an ex vivo mouse brain at ultra-high field.

2.
Magn Reson Med ; 90(1): 353-362, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36999746

RESUMO

PURPOSE: Estimating magnetic susceptibility using MRI depends on inverting a forward relationship between the susceptibility and measured Larmor frequency. However, an often-overlooked constraint in susceptibility fitting is that the Larmor frequency is only measured inside the sample, and after successful background field removal, susceptibility sources should only reside inside the same sample. Here, we test the impact of accounting for these constraints in susceptibility fitting. THEORY AND METHODS: Two different digital brain phantoms with scalar susceptibility were examined. We used the MEDI phantom, a simple phantom with no background fields, to examine the effect of the imposed constraints for various levels of SNR. Next, we considered the QSM reconstruction challenge 2.0 phantom with and without background fields. We estimated the parameter accuracy of openly-available QSM algorithms by comparing fitting results to the ground truth. Next, we implemented the mentioned constraints and compared to the standard approach. RESULTS: Including the spatial distribution of frequencies and susceptibility sources decreased the RMS-error compared to standard QSM on both brain phantoms when background fields were absent. When background field removal was unsuccessful, as is presumably the case in most in vivo conditions, it is better to allow sources outside the brain. CONCLUSION: Informing QSM algorithms about the location of susceptibility sources and where Larmor frequency was measured improves susceptibility fitting for realistic SNR levels and efficient background field removal. However, the latter remains the bottleneck of the algorithm. Allowing for external sources regularizes unsuccessful background field removal and is currently the best strategy in vivo.


Assuntos
Encéfalo , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos , Algoritmos
3.
NMR Biomed ; 36(3): e4859, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36285793

RESUMO

The magnetic susceptibility of tissue can provide valuable information about its chemical composition and microstructural organization. However, the relation between the magnetic microstructure and the measurable Larmor frequency shift is understood only for a few idealized cases. Here we analyze the microstructure formed by magnetized, NMR-invisible infinite cylinders suspended in an NMR-reporting fluid. Through simulations, we scrutinize various geometries of mesoscopic Lorentz cavities and inclusions, and show that the cavity size should be approximately one order of magnitude larger than the width of the inclusions. We also analytically derive the Larmor frequency shift for a population of cylinders with arbitrary orientation dispersion and show that it is determined by the l = 2 Laplace expansion coefficients p 2 m of the cylinders' orientation distribution function. Our work underscores the need to account for microstructural organization when estimating magnetic tissue properties.


Assuntos
Fenômenos Magnéticos , Tecidos , Imageamento por Ressonância Magnética , Tecidos/diagnóstico por imagem , Tecidos/fisiologia
4.
Neuroimage ; 211: 116605, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32044435

RESUMO

Diffusional Kurtosis Magnetic Resonance Imaging (DKI) quantifies the extent of non-Gaussian water diffusion, which has been shown to be a sensitive biomarker for microstructure in health and disease. However, DKI is not specific to any microstructural property per se since kurtosis may emerge from several different sources. Q-space trajectory encoding schemes have been proposed for decoupling kurtosis arising from the variance of mean diffusivities (isotropic kurtosis) from kurtosis driven by microscopic anisotropy (anisotropic kurtosis). Still, these methods assume that the system is comprised of multiple Gaussian diffusion components with vanishing intra-compartmental kurtosis (associated with restricted diffusion). Here, we develop a more general framework for resolving the underlying kurtosis sources without relying on the multiple Gaussian diffusion approximation. We introduce Correlation Tensor MRI (CTI) - an approach harnessing the versatility of double diffusion encoding (DDE) and its sensitivity to displacement correlation tensors capable of explicitly decoupling isotropic and anisotropic kurtosis components from intra-compartmental kurtosis effects arising from restricted (and time-dependent) diffusion. Additionally, we show that, by subtracting these isotropic and anisotropic kurtosis components from the total diffusional kurtosis, CTI provides an index that is potentially sensitive to intra-compartmental kurtosis. The theoretical foundations of CTI, as well as the first proof-of-concept CTI experiments in ex vivo mouse brains at ultrahigh field of 16.4 T, are presented. We find that anisotropic and isotropic kurtosis can decouple microscopic anisotropy from substantial partial volume effects between tissue and free water. Our intra-compartmental kurtosis index exhibited positive values in both white and grey matter tissues. Simulations in different synthetic microenvironments show, however, that our current CTI protocol for estimating intra-compartmental kurtosis is limited by higher order terms that were not taken into account in this study. CTI measurements were then extended to in vivo settings and used to map heathy rat brains at 9.4 T. These in vivo CTI results were found to be consistent with our ex vivo findings. Although future studies are still required to assess and mitigate the higher order effects on the intra-compartmental kurtosis index, our results show that CTI's more general estimates of anisotropic and isotropic kurtosis contributions are already ripe for future in vivo studies, which can have significant impact our understanding of the mechanisms underlying diffusion metrics extracted in health and disease.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Modelos Teóricos , Neuroimagem/métodos , Animais , Imagem de Difusão por Ressonância Magnética/normas , Camundongos , Neuroimagem/normas
5.
Neuroimage ; 208: 116406, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31830588

RESUMO

Diffusion kurtosis imaging (DKI) is an imaging modality that yields novel disease biomarkers and in combination with nervous tissue modeling, provides access to microstructural parameters. Recently, DKI and subsequent estimation of microstructural model parameters has been used for assessment of tissue changes in neurodegenerative diseases and associated animal models. In this study, mouse spinal cords from the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS) were investigated for the first time using DKI in combination with biophysical modeling to study the relationship between microstructural metrics and degree of animal dysfunction. Thirteen spinal cords were extracted from animals with varied grades of disability and scanned in a high-field MRI scanner along with five control specimen. Diffusion weighted data were acquired together with high resolution T2* images. Diffusion data were fit to estimate diffusion and kurtosis tensors and white matter modeling parameters, which were all used for subsequent statistical analysis using a linear mixed effects model. T2* images were used to delineate focal demyelination/inflammation. Our results reveal a strong relationship between disability and measured microstructural parameters in normal appearing white matter and gray matter. Relationships between disability and mean of the kurtosis tensor, radial kurtosis, radial diffusivity were similar to what has been found in other hypomyelinating MS models, and in patients. However, the changes in biophysical modeling parameters and in particular in extra-axonal axial diffusivity were clearly different from previous studies employing other animal models of MS. In conclusion, our data suggest that DKI and microstructural modeling can provide a unique contrast capable of detecting EAE-specific changes correlating with clinical disability.


Assuntos
Encefalomielite Autoimune Experimental/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Esclerose Múltipla/diagnóstico por imagem , Medula Espinal/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Animais , Imagem de Difusão por Ressonância Magnética , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/fisiopatologia , Feminino , Substância Cinzenta/patologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Esclerose Múltipla/patologia , Esclerose Múltipla/fisiopatologia , Medula Espinal/patologia , Substância Branca/patologia
6.
Neuroimage ; 182: 329-342, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28818694

RESUMO

Biophysical modelling of diffusion MRI is necessary to provide specific microstructural tissue properties. However, estimating model parameters from data with limited diffusion gradient strength, such as clinical scanners, has proven unreliable due to a shallow optimization landscape. On the other hand, estimation of diffusion kurtosis (DKI) parameters is more robust, and its parameters may be connected to microstructural parameters, given an appropriate biophysical model. However, it was previously shown that this procedure still does not provide sufficient information to uniquely determine all model parameters. In particular, a parameter degeneracy related to the relative magnitude of intra-axonal and extra-axonal diffusivities remains. Here we develop a model of diffusion in white matter including axonal dispersion and demonstrate stable estimation of all model parameters from DKI in fixed pig spinal cord. By employing the recently developed fast axisymmetric DKI, we use stimulated echo acquisition mode to collect data over a two orders of magnitude diffusion time range with very narrow diffusion gradient pulses, enabling finely resolved measurements of diffusion time dependence of both net diffusion and kurtosis metrics, as well as model intra- and extra-axonal diffusivities, and axonal dispersion. Our results demonstrate substantial time dependence of all parameters except volume fractions, and the additional time dimension provides support for intra-axonal diffusivity to be larger than extra-axonal diffusivity in spinal cord white matter, although not unambiguously. We compare our findings for the time-dependent compartmental diffusivities to predictions from effective medium theory with reasonable agreement.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Modelos Teóricos , Neuroimagem/métodos , Medula Espinal/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Animais , Suínos
7.
Neuroimage ; 167: 342-353, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29196269

RESUMO

Chronic mild stress (CMS) induced depression elicits several debilitating symptoms and causes a significant economic burden on society. High variability in the symptomatology of depression poses substantial impediment to accurate diagnosis and therapy outcome. CMS exposure induces significant metabolic and microstructural alterations in the hippocampus (HP), prefrontal cortex (PFC), caudate-putamen (CP) and amygdala (AM), however, recovery from these maladaptive changes are limited and this may provide negative effects on the therapeutic treatment and management of depression. The present study utilized anhedonic rats from the unpredictable CMS model of depression to study metabolic recovery in the ventral hippocampus (vHP) and microstructural recovery in the HP, AM, CP, and PFC. The study employed 1H MR spectroscopy (1H MRS) and in-vivo diffusion MRI (d-MRI) at the age of week 18 (week 1 post CMS exposure) week 20 (week 3 post CMS) and week 25 (week 8 post CMS exposure) in the anhedonic group, and at the age of week 18 and week 22 in the control group. The d-MRI data have provided an array of diffusion tensor metrics (FA, MD, AD, and RD), and fast kurtosis metrics (MKT, WL and WT). CMS exposure induced a significant metabolic alteration in vHP, and significant microstructural alterations were observed in the HP, AM, and PFC in comparison to the age match control and within the anhedonic group. A significantly high level of N-acetylaspartate (NAA) was observed in vHP at the age of week 18 in comparison to age match control and week 20 and week 25 of the anhedonic group. HP and AM showed significant microstructural alterations up to the age of week 22 in the anhedonic group. PFC showed significant microstructural alterations only at the age of week 18, however, most of the metrics showed significantly higher value at the age of week 20 in the anhedonic group. The significantly increased NAA concentration may indicate impaired catabolism due to astrogliosis or oxidative stress. The significantly increased WL in the AM and HP may indicate hypertrophy of AM and reduced volume of HP. Such metabolic and microstructural alterations could be useful in disease diagnosis and follow-up treatment intervention in depression and similar disorders.


Assuntos
Tonsila do Cerebelo , Depressão , Imagem de Difusão por Ressonância Magnética/métodos , Hipocampo , Espectroscopia de Prótons por Ressonância Magnética/métodos , Estresse Psicológico , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/patologia , Anedonia/fisiologia , Animais , Depressão/diagnóstico por imagem , Depressão/metabolismo , Depressão/patologia , Modelos Animais de Doenças , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Ratos , Ratos Long-Evans , Estresse Psicológico/diagnóstico por imagem , Estresse Psicológico/metabolismo , Estresse Psicológico/patologia
8.
NMR Biomed ; 35(12): e4829, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36168101
9.
NMR Biomed ; 30(11)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28841758

RESUMO

Diffusion kurtosis imaging (DKI) is an extension of diffusion tensor imaging that accounts for leading non-Gaussian diffusion effects. In DKI studies, a wide range of different gradient strengths (b-values) is used, which is known to affect the estimated diffusivity and kurtosis parameters. Hence there is a need to assess the accuracy and precision of the estimated parameters as a function of b-value. This work examines the error in the estimation of mean of the kurtosis tensor (MKT) with respect to the ground truth, using simulations based on a biophysical model for both gray (GM) and white (WM) matter. Model parameters are derived from densely sampled experimental data acquired in ex vivo rat brain and in vivo human brain. Additionally, the variability of MKT is studied using the experimental data. Prevalent fitting protocols are implemented and investigated. The results show strong dependence on the maximum b-value of both net relative error and standard deviation of error for all of the employed fitting protocols. The choice of b-values with minimum MKT estimation error and standard deviation of error was found to depend on the protocol type and the tissue. Protocols that utilize two terms of the cumulant expansion (DKI) were found to achieve minimum error in GM at b-values less than 1 ms/µm2 , whereas maximal b-values of about 2.5 ms/µm2 were found to be optimal in WM. Protocols including additional higher order terms of the cumulant expansion were found to provide higher accuracy for the more commonly used b-value regime in GM, but were associated with higher error in WM. Averaged over multiple voxels, a net average error of around 15% for both WM and GM was observed for the optimal b-value choice. These results suggest caution when using DKI generated metrics for microstructural modeling and when comparing results obtained using different fitting techniques and b-values.


Assuntos
Imagem de Tensor de Difusão/métodos , Animais , Humanos , Ratos
10.
Neuroimage ; 142: 381-393, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27539807

RESUMO

Diffusion kurtosis imaging (DKI) is being increasingly reported to provide sensitive biomarkers of subtle changes in tissue microstructure. However, DKI also imposes larger data requirements than diffusion tensor imaging (DTI), hence, the widespread adaptation and exploration of DKI would benefit from more efficient acquisition and computational methods. To meet this demand, we recently developed a method capable of estimating mean kurtosis with only 13 diffusion weighted images. This approach was later shown to provide very accurate mean kurtosis estimates and to be more efficient in terms of contrast to noise per unit time. However, insofar, the computation of two other critical DKI parameters, radial and axial kurtosis, has required the estimation of all 22 variables parameterizing the full DKI signal expression. Here, we present two strategies for estimating all of DKI's principal parameters - mean kurtosis, radial kurtosis, and axial kurtosis - using only 19 diffusion weighted images, compared to the current state-of-the-art acquisitions typically requiring about 60 images. The first approach is based on axially symmetric diffusion and kurtosis tensors, presented here for the first time, and referred to as axially symmetric DKI. The second approach is applicable in tissues with a priori known principal diffusion direction, and does not require fitting of any kind. The approaches are evaluated in human brain in vivo as well as in fixed rat spinal cord, and are demonstrated to provide metrics in good agreement with their full DKI counterparts estimated with nonlinear least squares. For small data sets and in white matter, axially symmetric DKI provides more accurate and robust estimates than unconstrained DKI. The significant acceleration achieved further paves the way to routine application of the technique.


Assuntos
Imagem de Tensor de Difusão/métodos , Processamento de Imagem Assistida por Computador/métodos , Modelos Teóricos , Substância Branca/diagnóstico por imagem , Adulto , Animais , Humanos , Ratos , Ratos Long-Evans
11.
Neuroimage ; 142: 421-430, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27389790

RESUMO

Depression is one of the leading causes of disability worldwide. Immense heterogeneity in symptoms of depression causes difficulty in diagnosis, and to date, there are no established biomarkers or imaging methods to examine depression. Unpredictable chronic mild stress (CMS) induced anhedonia is considered to be a realistic model of depression in studies of animal subjects. Stereological and neuronal tracing techniques have demonstrated persistent remodeling of microstructure in hippocampus, prefrontal cortex and amygdala of CMS brains. Recent developments in diffusion MRI (d-MRI) analyses, such as neurite density and diffusion kurtosis imaging (DKI), are able to capture microstructural changes and are considered to be robust tools in preclinical and clinical imaging. The present study utilized d-MRI analyzed with a neurite density model and the DKI framework to investigate microstructure in the hippocampus, prefrontal cortex, caudate putamen and amygdala regions of CMS rat brains by comparison to brains from normal controls. To validate findings of CMS induced microstructural alteration, histology was performed to determine neurite, nuclear and astrocyte density. d-MRI based neurite density and tensor-based mean kurtosis (MKT) were significantly higher, while mean diffusivity (MD), extracellular diffusivity (Deff) and intra-neurite diffusivity(DL) were significantly lower in the amygdala of CMS rat brains. Deff was also significantly lower in the hippocampus and caudate putamen in stressed groups. Histological neurite density corroborated the d-MRI findings in the amygdala and reductions in nuclear and astrocyte density further buttressed the d-MRI results. The present study demonstrated that the d-MRI based neurite density and MKT can reveal specific microstructural changes in CMS rat brains and these parameters might have value in clinical diagnosis of depression and for evaluation of treatment efficacy.


Assuntos
Tonsila do Cerebelo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Hipocampo/diagnóstico por imagem , Modelos Biológicos , Neuritos , Córtex Pré-Frontal/diagnóstico por imagem , Estresse Psicológico/diagnóstico por imagem , Tonsila do Cerebelo/citologia , Animais , Hipocampo/citologia , Masculino , Córtex Pré-Frontal/citologia , Ratos , Ratos Wistar
12.
Magn Reson Med ; 76(5): 1455-1468, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26608731

RESUMO

PURPOSE: The clinical use of kurtosis imaging is impeded by long acquisitions and postprocessing. Recently, estimation of mean kurtosis tensor W¯ and mean diffusivity ( D¯) was made possible from 13 distinct diffusion weighted MRI acquisitions (the 1-3-9 protocol) with simple postprocessing. Here, we analyze the effects of noise and nonideal diffusion encoding, and propose a new correction strategy. We also present a 1-9-9 protocol with increased robustness to experimental imperfections and minimal additional scan time. This refinement does not affect computation time and also provides a fast estimate of fractional anisotropy (FA). THEORY AND METHODS: 1-3-9/1-9-9 data are acquired in rat and human brains, and estimates of D¯, FA, W¯ from human brains are compared with traditional estimates from an extensive diffusion kurtosis imaging data set. Simulations are used to evaluate the influence of noise and diffusion encodings deviating from the scheme, and the performance of the correction strategy. Optimal b-values are determined from simulations and data. RESULTS: Accuracy and precision in D¯ and W¯ are comparable to nonlinear least squares estimation, and is improved with the 1-9-9 protocol. The compensation strategy vastly improves parameter estimation in nonideal data. CONCLUSION: The framework offers a robust and compact method for estimating several diffusion metrics. The protocol is easily implemented. Magn Reson Med 76:1455-1468, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Assuntos
Algoritmos , Encéfalo/anatomia & histologia , Imagem de Tensor de Difusão/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Neuroimagem/métodos , Animais , Humanos , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Razão Sinal-Ruído
13.
Neuroimage ; 111: 192-203, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25665963

RESUMO

Diffusion magnetic resonance imaging (d-MRI) is a powerful non-invasive and non-destructive technique for characterizing brain tissue on the microscopic scale. However, the lack of validation of d-MRI by independent experimental means poses an obstacle to accurate interpretation of data acquired using this method. Recently, structure tensor analysis has been applied to light microscopy images, and this technique holds promise to be a powerful validation strategy for d-MRI. Advantages of this approach include its similarity to d-MRI in terms of averaging the effects of a large number of cellular structures, and its simplicity, which enables it to be implemented in a high-throughput manner. However, a drawback of previous implementations of this technique arises from it being restricted to 2D. As a result, structure tensor analyses have been limited to tissue sectioned in a direction orthogonal to the direction of interest. Here we describe the analytical framework for extending structure tensor analysis to 3D, and utilize the results to analyze serial image "stacks" acquired with confocal microscopy of rhesus macaque hippocampal tissue. Implementation of 3D structure tensor procedures requires removal of sources of anisotropy introduced in tissue preparation and confocal imaging. This is accomplished with image processing steps to mitigate the effects of anisotropic tissue shrinkage, and the effects of anisotropy in the point spread function (PSF). In order to address the latter confound, we describe procedures for measuring the dependence of PSF anisotropy on distance from the microscope objective within tissue. Prior to microscopy, ex vivo d-MRI measurements performed on the hippocampal tissue revealed three regions of tissue with mutually orthogonal directions of least restricted diffusion that correspond to CA1, alveus and inferior longitudinal fasciculus. We demonstrate the ability of 3D structure tensor analysis to identify structure tensor orientations that are parallel to d-MRI derived diffusion tensors in each of these three regions. It is concluded that the 3D generalization of structure tensor analysis will further improve the utility of this method for validation of d-MRI by making it a more flexible experimental technique that closer resembles the inherently 3D nature of d-MRI measurements.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Hipocampo/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Animais , Feminino , Macaca mulatta , Microscopia Confocal
14.
Acta Oncol ; 54(9): 1535-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26217984

RESUMO

BACKGROUND: Diffusion-weighted magnetic resonance imaging (DW-MRI) and the derived apparent diffusion coefficient (ADC) value has potential for monitoring tumor response to radiotherapy (RT). Method used for segmentation of volumes with reduced diffusion will influence both volume size and observed distribution of ADC values. This study evaluates: 1) different segmentation methods; and 2) how they affect assessment of tumor ADC value during RT. MATERIAL AND METHODS: Eleven patients with locally advanced cervical cancer underwent MRI three times during their RT: prior to start of RT (PRERT), two weeks into external beam RT (WK2RT) and one week prior to brachytherapy (PREBT). Volumes on DW-MRI were segmented using three semi-automatic segmentation methods: "cluster analysis", "relative signal intensity (SD4)" and "region growing". Segmented volumes were compared to the gross tumor volume (GTV) identified on T2-weighted MR images using the Jaccard similarity index (JSI). ADC values from segmented volumes were compared and changes of ADC values during therapy were evaluated. RESULTS: Significant difference between the four volumes (GTV, DWIcluster, DWISD4 and DWIregion) was found (p < 0.01), and the volumes changed significantly during treatment (p < 0.01). There was a significant difference in JSI among segmentation methods at time of PRERT (p < 0.016) with region growing having the lowest JSIGTV (mean± sd: 0.35 ± 0.1), followed by the SD4 method (mean± sd: 0.50 ± 0.1) and clustering (mean± sd: 0.52 ± 0.3). There was no significant difference in mean ADC value compared at same treatment time. Mean tumor ADC value increased significantly (p < 0.01) for all methods across treatment time. CONCLUSION: Among the three semi-automatic segmentations of hyper-intense intensities on DW-MR images implemented, cluster analysis and relative signal thresholding had the greatest similarity to the clinical tumor volume. Evaluation of mean ADC value did not depend on segmentation method.


Assuntos
Carcinoma/radioterapia , Imagem de Difusão por Ressonância Magnética , Difusão/efeitos da radiação , Determinação de Ponto Final/métodos , Neoplasias do Colo do Útero/radioterapia , Carcinoma/patologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Resultado do Tratamento , Carga Tumoral , Neoplasias do Colo do Útero/patologia
15.
Curr Neurol Neurosci Rep ; 15(6): 37, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25956993

RESUMO

In acute ischemic stroke, critical hypoperfusion is a frequent cause of hypoxic tissue injury: As cerebral blood flow (CBF) falls below the ischemic threshold of 20 mL/100 mL/min, neurological symptoms develop and hypoxic tissue injury evolves within minutes or hours unless the oxygen supply is restored. But is ischemia the only hemodynamic source of hypoxic tissue injury? Reanalyses of the equations we traditionally use to describe the relation between CBF and tissue oxygenation suggest that capillary flow patterns are crucial for the efficient extraction of oxygen: without close capillary flow control, "functional shunts" tend to form and some of the blood's oxygen content in effect becomes inaccessible to tissue. This phenomenon raises several questions: Are there in fact two hemodynamic causes of tissue hypoxia: Limited blood supply (ischemia) and limited oxygen extraction due to capillary dysfunction? If so, how do we distinguish the two, experimentally and in patients? Do flow-metabolism coupling mechanisms adjust CBF to optimize tissue oxygenation when capillary dysfunction impairs oxygen extraction downstream? Cardiovascular risk factors such as age, hypertension, diabetes, hypercholesterolemia, and smoking increase the risk of both stroke and dementia. The capillary dysfunction phenomenon therefore forces us to consider whether changes in capillary morphology or blood rheology may play a role in the etiology of some stroke subtypes and in Alzheimer's disease. Here, we discuss whether certain disease characteristics suggest capillary dysfunction rather than primary flow-limiting vascular pathology and how capillary dysfunction may be imaged and managed.


Assuntos
Encéfalo/irrigação sanguínea , Capilares/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Encéfalo/fisiopatologia , Doenças Cardiovasculares/complicações , Circulação Cerebrovascular , Humanos , Fatores de Risco , Acidente Vascular Cerebral/complicações
16.
Basic Res Cardiol ; 109(3): 409, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24743925

RESUMO

Ischemic heart disease (IHD) is characterized by an imbalance between oxygen supply and demand, most frequently caused by coronary artery disease (CAD) that reduces myocardial perfusion. In some patients, IHD is ascribed to microvascular dysfunction (MVD): microcirculatory disturbances that reduce myocardial perfusion at the level of myocardial pre-arterioles and arterioles. In a minority of cases, chest pain and reductions in myocardial flow reserve may even occur in patients without any other demonstrable systemic or cardiac disease. In this topical review, we address whether these findings might be caused by impaired myocardial oxygen extraction, caused by capillary flow disturbances further downstream. Myocardial blood flow (MBF) increases approximately linearly with oxygen utilization, but efficient oxygen extraction at high MBF values is known to depend on the parallel reduction of capillary transit time heterogeneity (CTH). Consequently, changes in capillary wall morphology or blood viscosity may impair myocardial oxygen extraction by preventing capillary flow homogenization. Indeed, a recent re-analysis of oxygen transport in tissue shows that elevated CTH can reduce tissue oxygenation by causing a functional shunt of oxygenated blood through the tissue. We review the combined effects of MBF, CTH, and tissue oxygen tension on myocardial oxygen supply. We show that as CTH increases, normal vasodilator responses must be attenuated in order to reduce the degree of functional shunting and improve blood-tissue oxygen concentration gradients to allow sufficient myocardial oxygenation. Theoretically, CTH can reach levels such that increased metabolic demands cannot be met, resulting in tissue hypoxia and angina in the absence of flow-limiting CAD or MVD. We discuss these predictions in the context of MVD, myocardial infarction, and reperfusion injury.


Assuntos
Capilares/fisiopatologia , Circulação Coronária , Microcirculação , Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo , Consumo de Oxigênio , Oxigênio/sangue , Animais , Velocidade do Fluxo Sanguíneo , Hemodinâmica , Humanos , Modelos Cardiovasculares , Isquemia Miocárdica/sangue , Isquemia Miocárdica/fisiopatologia , Fatores de Tempo
18.
Contemp Clin Trials Commun ; 38: 101279, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38444875

RESUMO

Introduction: Approximately one-third of all persons with multiple sclerosis (pwMS) are older, i.e., having an age ≥60 years. Whilst ageing and MS separately elicit deteriorating effects on brain morphology, neuromuscular function, and physical function, the combination of ageing and MS may pose a particular challenge. To counteract such detrimental changes, power training (i.e., a type of resistance exercise focusing on moderate-to-high loading at maximal intended movement velocity) presents itself as a viable and highly effective solution. Power training is known to positively impact physical function, neuromuscular function, as well as brain morphology. Existing evidence is promising but limited to young and middle-aged pwMS, with the effects of power training remaining to be elucidated in older pwMS. Methods: The presented 'Power Training in Older MS patients (PoTOMS)' trial is a national, multi-center, parallel-group, randomized controlled trial. The trial compares 24 weeks of usual care(n = 30) to 24 weeks of usual care and power training (n = 30). The primary outcome is whole brain atrophy rate. The secondary outcomes include changes in brain micro and macro structures, neuromuscular function, physical function, cognitive function, bone health, and patient-reported outcomes. Ethics and dissemination: The presented study is approved by The Regional Ethics Committee (reference number 1-10-72-222-20) and registered at the Danish Data Protection Agency (reference number 2016-051-000001). All study findings will be published in scientific peer-reviewed journals and presented at relevant scientific conferences independent of the results. The www.clinicaltrials.gov identifier is NCT04762342.

19.
Magn Reson Med ; 69(6): 1754-60, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23589312

RESUMO

PURPOSE: Results from several recent studies suggest the magnetic resonance diffusion-derived metric mean kurtosis (MK) to be a sensitive marker for tissue pathology; however, lengthy acquisition and postprocessing time hamper further exploration. The purpose of this study is to introduce and evaluate a new MK metric and a rapid protocol for its estimation. METHODS: The protocol requires acquisition of 13 standard diffusion-weighted images, followed by linear combination of log diffusion signals, thus avoiding nonlinear optimization. The method was evaluated on an ex vivo rat brain and an in vivo human brain. Parameter maps were compared with MK estimated from a standard diffusion kurtosis imaging (DKI) data set comprising 160 diffusion-weighted images. RESULTS: The new MK displays remarkably similar contrast to MK, and the proposed protocol acquires the necessary data in less than 1 min for full human brain coverage, with a postprocessing time of a few seconds. Scan-rescan reproducibility was comparable with MK. CONCLUSION: The framework offers a robust and rapid method for estimating MK, with a protocol easily adapted on commercial scanners, as it requires only minimal modification of standard diffusion-weighting protocols. These properties make the method feasible in practically any clinical setting.


Assuntos
Algoritmos , Encéfalo/anatomia & histologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
NMR Biomed ; 26(12): 1647-62, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24038641

RESUMO

Pulsed field gradient diffusion sequences (PFG) with multiple diffusion encoding blocks have been indicated to offer new microstructural tissue information, such as the ability to detect nonspherical compartment shapes in macroscopically isotropic samples, i.e. samples with negligible directional signal dependence on diffusion gradients in standard diffusion experiments. However, current acquisition schemes are not rotationally invariant in the sense that the derived metrics depend on the orientation of the sample, and are affected by the interplay of sampling directions and compartment orientation dispersion when applied to macroscopically anisotropic systems. Here we propose a new framework, the d-PFG 5-design, to enable rotationally invariant estimation of double wave vector diffusion metrics (d-PFG). The method is based on the idea that an appropriate orientational average of the signal emulates the signal from a powder preparation of the same sample, where macroscopic anisotropy is absent by construction. Our approach exploits the theory of exact numerical integration (quadrature) of polynomials on the rotation group, and we exemplify the general procedure with a set consisting of 60 pairs of diffusion wave vectors (the d-PFG 5-design) facilitating a theoretically exact determination of the fourth order Taylor or cumulant expansion of the orientationally averaged signal. The d-PFG 5-design is evaluated with numerical simulations and ex vivo high field diffusion MRI experiments in a nonhuman primate brain. Specifically, we demonstrate rotational invariance when estimating compartment eccentricity, which we show offers new microstructural information, complementary to that of fractional anisotropy (FA) from diffusion tensor imaging (DTI). The imaging observations are supported by a new theoretical result, directly relating compartment eccentricity to FA of individual pores.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Animais , Anisotropia , Chlorocebus aethiops , Simulação por Computador , Difusão , Imageamento Tridimensional , Rotação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA