Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Nature ; 630(8016): 387-391, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839953

RESUMO

Threatened species are by definition species that are in need of assistance. In the absence of suitable conservation interventions, they are likely to disappear soon1. There is limited understanding of how and where conservation interventions are applied globally, or how well they work2,3. Here, using information from the International Union for Conservation of Nature Red List and other global databases, we find that for species at risk from three of the biggest drivers of biodiversity loss-habitat loss, overexploitation for international trade and invasive species4-many appear to lack the appropriate types of conservation interventions. Indeed, although there has been substantial recent expansion of the protected area network, we still find that 91% of threatened species have insufficient representation of their habitats within protected areas. Conservation interventions are not implemented uniformly across different taxa and regions and, even when present, have infrequently led to substantial improvements in the status of species. For 58% of the world's threatened terrestrial species, we find conservation interventions to be notably insufficient or absent. We cannot determine whether such species are truly neglected, or whether efforts to recover them are not included in major conservation databases. If they are indeed neglected, the outlook for many of the world's threatened species is grim without more and better targeted action.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Internacionalidade , Animais , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/estatística & dados numéricos , Bases de Dados Factuais , Espécies em Perigo de Extinção/estatística & dados numéricos , Extinção Biológica , Espécies Introduzidas/estatística & dados numéricos
2.
Nature ; 620(7975): 807-812, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37612395

RESUMO

The United Nations recently agreed to major expansions of global protected areas (PAs) to slow biodiversity declines1. However, although reserves often reduce habitat loss, their efficacy at preserving animal diversity and their influence on biodiversity in surrounding unprotected areas remain unclear2-5. Unregulated hunting can empty PAs of large animals6, illegal tree felling can degrade habitat quality7, and parks can simply displace disturbances such as logging and hunting to unprotected areas of the landscape8 (a phenomenon called leakage). Alternatively, well-functioning PAs could enhance animal diversity within reserves as well as in nearby unprotected sites9 (an effect called spillover). Here we test whether PAs across mega-diverse Southeast Asia contribute to vertebrate conservation inside and outside their boundaries. Reserves increased all facets of bird diversity. Large reserves were also associated with substantially enhanced mammal diversity in the adjacent unprotected landscape. Rather than PAs generating leakage that deteriorated ecological conditions elsewhere, our results are consistent with PAs inducing spillover that benefits biodiversity in surrounding areas. These findings support the United Nations goal of achieving 30% PA coverage by 2030 by demonstrating that PAs are associated with higher vertebrate diversity both inside their boundaries and in the broader landscape.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Objetivos , Clima Tropical , Nações Unidas , Animais , Conservação dos Recursos Naturais/legislação & jurisprudência , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/tendências , Mamíferos , Agricultura Florestal/legislação & jurisprudência , Agricultura Florestal/métodos , Agricultura Florestal/tendências
3.
PLoS Biol ; 22(7): e3002658, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38991106

RESUMO

Tetrapods (amphibians, reptiles, birds, and mammals) are model systems for global biodiversity science, but continuing data gaps, limited data standardisation, and ongoing flux in taxonomic nomenclature constrain integrative research on this group and potentially cause biased inference. We combined and harmonised taxonomic, spatial, phylogenetic, and attribute data with phylogeny-based multiple imputation to provide a comprehensive data resource (TetrapodTraits 1.0.0) that includes values, predictions, and sources for body size, activity time, micro- and macrohabitat, ecosystem, threat status, biogeography, insularity, environmental preferences, and human influence, for all 33,281 tetrapod species covered in recent fully sampled phylogenies. We assess gaps and biases across taxa and space, finding that shared data missing in attribute values increased with taxon-level completeness and richness across clades. Prediction of missing attribute values using multiple imputation revealed substantial changes in estimated macroecological patterns. These results highlight biases incurred by nonrandom missingness and strategies to best address them. While there is an obvious need for further data collection and updates, our phylogeny-informed database of tetrapod traits can support a more comprehensive representation of tetrapod species and their attributes in ecology, evolution, and conservation research.


Assuntos
Biodiversidade , Aves , Mamíferos , Filogenia , Répteis , Animais , Répteis/classificação , Anfíbios , Ecossistema , Viés , Humanos , Tamanho Corporal
4.
Proc Natl Acad Sci U S A ; 121(41): e2316827121, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39312680

RESUMO

Movement is a key means by which animals cope with variable environments. As they move, animals construct individual niches composed of the environmental conditions they experience. Niche axes may vary over time and covary with one another as animals make tradeoffs between competing needs. Seasonal migration is expected to produce substantial niche variation as animals move to keep pace with major life history phases and fluctuations in environmental conditions. Here, we apply a time-ordered principal component analysis to examine dynamic niche variance and covariance across the annual cycle for four species of migratory crane: common crane (Grus grus, n = 20), demoiselle crane (Anthropoides virgo, n = 66), black-necked crane (Grus nigricollis, n = 9), and white-naped crane (Grus vipio, n = 9). We consider four key niche components known to be important to aspects of crane natural history: enhanced vegetation index (resources availability), temperature (thermoregulation), crop proportion (preferred foraging habitat), and proximity to water (predator avoidance). All species showed a primary seasonal niche "rhythm" that dominated variance in niche components across the annual cycle. Secondary rhythms were linked to major species-specific life history phases (migration, breeding, and nonbreeding) as well as seasonal environmental patterns. Furthermore, we found that cranes' experiences of the environment emerge from time-dynamic tradeoffs among niche components. We suggest that our approach to estimating the environmental niche as a multidimensional and time-dynamical system of tradeoffs improves mechanistic understanding of organism-environment interactions.


Assuntos
Migração Animal , Aves , Ecossistema , Estações do Ano , Animais , Migração Animal/fisiologia , Aves/fisiologia
5.
Trends Genet ; 39(11): 816-829, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37648576

RESUMO

Genetic biodiversity is rapidly gaining attention in global conservation policy. However, for almost all species, conservation relevant, population-level genetic data are lacking, limiting the extent to which genetic diversity can be used for conservation policy and decision-making. Macrogenetics is an emerging discipline that explores the patterns and processes underlying population genetic composition at broad taxonomic and spatial scales by aggregating and reanalyzing thousands of published genetic datasets. Here we argue that focusing macrogenetic tools on conservation needs, or conservation macrogenetics, will enhance decision-making for conservation practice and fill key data gaps for global policy. Conservation macrogenetics provides an empirical basis for better understanding the complexity and resilience of biological systems and, thus, how anthropogenic drivers and policy decisions affect biodiversity.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Genética Populacional , Ecossistema
6.
PLoS Biol ; 21(2): e3001991, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36854036

RESUMO

The conservation of evolutionary history has been linked to increased benefits for humanity and can be captured by phylogenetic diversity (PD). The Evolutionarily Distinct and Globally Endangered (EDGE) metric has, since 2007, been used to prioritise threatened species for practical conservation that embody large amounts of evolutionary history. While there have been important research advances since 2007, they have not been adopted in practice because of a lack of consensus in the conservation community. Here, building from an interdisciplinary workshop to update the existing EDGE approach, we present an "EDGE2" protocol that draws on a decade of research and innovation to develop an improved, consistent methodology for prioritising species conservation efforts. Key advances include methods for dealing with uncertainty and accounting for the extinction risk of closely related species. We describe EDGE2 in terms of distinct components to facilitate future revisions to its constituent parts without needing to reconsider the whole. We illustrate EDGE2 by applying it to the world's mammals. As we approach a crossroads for global biodiversity policy, this Consensus View shows how collaboration between academic and applied conservation biologists can guide effective and practical priority-setting to conserve biodiversity.


Assuntos
Biodiversidade , Espécies em Perigo de Extinção , Animais , Filogenia , Evolução Biológica , Ciências Humanas , Mamíferos
7.
Proc Natl Acad Sci U S A ; 120(20): e2220672120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37159475

RESUMO

The extraordinary number of species in the tropics when compared to the extra-tropics is probably the most prominent and consistent pattern in biogeography, suggesting that overarching processes regulate this diversity gradient. A major challenge to characterizing which processes are at play relies on quantifying how the frequency and determinants of tropical and extra-tropical speciation, extinction, and dispersal events shaped evolutionary radiations. We address this question by developing and applying spatiotemporal phylogenetic and paleontological models of diversification for tetrapod species incorporating paleoenvironmental variation. Our phylogenetic model results show that area, energy, or species richness did not uniformly affect speciation rates across tetrapods and dispute expectations of a latitudinal gradient in speciation rates. Instead, both neontological and fossil evidence coincide in underscoring the role of extra-tropical extinctions and the outflow of tropical species in shaping biodiversity. These diversification dynamics accurately predict present-day levels of species richness across latitudes and uncover temporal idiosyncrasies but spatial generality across the major tetrapod radiations.


Assuntos
Biodiversidade , Evolução Biológica , Filogenia , Dissidências e Disputas , Fósseis
10.
Proc Natl Acad Sci U S A ; 119(12): e2117297119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35286193

RESUMO

SignificanceUnderstanding the impacts of urbanization and the associated urban land expansion on species is vital for informed urban planning that minimizes biodiversity loss. Predicting habitat that will be lost to urban land expansion for over 30,000 species under three different future scenarios, we find that up to 855 species are directly threatened due to unmitigated urbanization. Our projections pinpoint rapidly urbanizing regions of sub-Saharan Africa, South America, Mesoamerica, and Southeast Asia where, without careful planning, urbanization is expected to cause particularly large biodiversity loss. Our findings highlight the urgent need for an increased focus on urban land in global conservation strategies and identify high-priority areas for this engagement.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Previsões , Urbanização
11.
Glob Chang Biol ; 30(7): e17408, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38984769

RESUMO

The geographic redistributions of species due to a rapidly changing climate are poised to perturb ecological communities and significantly impact ecosystems and human livelihoods. Effectively managing these biological impacts requires a thorough understanding of the patterns and processes of species geographic range shifts. While substantial recent redistributions have been identified and recognized to vary by taxon, region, and range geometry, there are large gaps and biases in the available evidence. Here, we use the largest compilation of geographic range change observations to date, comprised of 33,016 potential redistributions across 12,009 species, to formally assess within- and cross-species coverage and biases and to motivate future data collection. We find that species coverage varies strongly by taxon and underrepresents species at high and low latitudes. Within species, assessments of potential redistributions came from parts of their geographic range that were highly uneven and non-representative. For most species and taxa, studies were strongly biased toward the colder parts of species' distributions and thus significantly underrepresented populations that might get pushed beyond their maximum temperature limits. Coverage of potential leading and trailing geographic range edges under a changing climate was similarly uneven. Only 8% of studied species were assessed at both high and low latitude and elevation range edges, with most only covered at one edge. This suggests that substantial within-species biases exacerbate the considerable geographic and taxonomic among-species unevenness in evidence. Our results open the door for a more quantitative accounting for existing knowledge biases in climate change ecology and a more informed management and conservation. Our findings offer guidance for future data collection that better addresses information gaps and provides a more effective foundation for managing the biological impacts of climate change.


Assuntos
Mudança Climática , Animais , Ecossistema , Geografia , Biodiversidade , Plantas
12.
PLoS Biol ; 19(8): e3001336, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34383738

RESUMO

Conserving and managing biodiversity in the face of ongoing global change requires sufficient evidence to assess status and trends of species distributions. Here, we propose novel indicators of biodiversity data coverage and sampling effectiveness and analyze national trajectories in closing spatiotemporal knowledge gaps for terrestrial vertebrates (1950 to 2019). Despite a rapid rise in data coverage, particularly in the last 2 decades, strong geographic and taxonomic biases persist. For some taxa and regions, a tremendous growth in records failed to directly translate into newfound knowledge due to a sharp decline in sampling effectiveness. However, we found that a nation's coverage was stronger for species for which it holds greater stewardship. As countries under the post-2020 Global Biodiversity Framework renew their commitments to an improved, rigorous biodiversity knowledge base, our findings highlight opportunities for international collaboration to close critical information gaps.


Assuntos
Distribuição Animal , Biodiversidade , Ecologia/normas , Ecologia/tendências , Animais , Artiodáctilos , Conservação dos Recursos Naturais , Ecologia/métodos , Internacionalidade , Panthera
13.
PLoS Biol ; 19(11): e3001460, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34780461

RESUMO

A vast range of research applications in biodiversity sciences requires integrating primary species, genetic, or ecosystem data with other environmental data. This integration requires a consideration of the spatial and temporal scale appropriate for the data and processes in question. But a versatile and scale flexible environmental annotation of biodiversity data remains constrained by technical hurdles. Existing tools have streamlined the intersection of occurrence records with gridded environmental data but have remained limited in their ability to address a range of spatial and temporal grains, especially for large datasets. We present the Spatiotemporal Observation Annotation Tool (STOAT), a cloud-based toolbox for flexible biodiversity-environment annotations. STOAT is optimized for large biodiversity datasets and allows user-specified spatial and temporal resolution and buffering in support of environmental characterizations that account for the uncertainty and scale of data and of relevant processes. The tool offers these services for a growing set of near global, remotely sensed, or modeled environmental data, including Landsat, MODIS, EarthEnv, and CHELSA. STOAT includes a user-friendly, web-based dashboard that provides tools for annotation task management and result visualization, linked to Map of Life, and a dedicated R package (rstoat) for programmatic access. We demonstrate STOAT functionality with several examples that illustrate phenological variation and spatial and temporal scale dependence of environmental characteristics of birds at a continental scale. We expect STOAT to facilitate broader exploration and assessment of the scale dependence of observations and processes in ecology.


Assuntos
Biodiversidade , Computação em Nuvem , Animais , Aves/fisiologia , Bases de Dados como Assunto , Comunicações Via Satélite , Estações do Ano , Análise Espaço-Temporal , Especificidade da Espécie , Temperatura , Fatores de Tempo
14.
Nature ; 555(7695): 246-250, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29466335

RESUMO

Mountain ranges harbour exceptionally high biodiversity, which is now under threat from rapid environmental change. However, despite decades of effort, the limited availability of data and analytical tools has prevented a robust and truly global characterization of elevational biodiversity gradients and their evolutionary origins. This has hampered a general understanding of the processes involved in the assembly and maintenance of montane communities. Here we show that a worldwide mid-elevation peak in bird richness is driven by wide-ranging species and disappears when we use a subsampling procedure that ensures even species representation in space and facilitates evolutionary interpretation. Instead, richness corrected for range size declines linearly with increasing elevation. We find that the more depauperate assemblages at higher elevations are characterized by higher rates of diversification across all mountain regions, rejecting the idea that lower recent diversification rates are the general cause of less diverse biota. Across all elevations, assemblages on mountains with high rates of past temperature change exhibit more rapid diversification, highlighting the importance of climatic fluctuations in driving the evolutionary dynamics of mountain biodiversity. While different geomorphological and climatic attributes of mountain regions have been pivotal in determining the remarkable richness gradients observed today, our results underscore the role of ongoing and often very recent diversification processes in maintaining the unique and highly adapted biodiversity of higher elevations.


Assuntos
Altitude , Biodiversidade , Aves/classificação , Mapeamento Geográfico , Animais , Aves/genética , Especificidade da Espécie
15.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34599095

RESUMO

Far from a uniform band, the biodiversity found across Earth's tropical moist forests varies widely between the high diversity of the Neotropics and Indomalaya and the relatively lower diversity of the Afrotropics. Explanations for this variation across different regions, the "pantropical diversity disparity" (PDD), remain contentious, due to difficulty teasing apart the effects of contemporary climate and paleoenvironmental history. Here, we assess the ubiquity of the PDD in over 150,000 species of terrestrial plants and vertebrates and investigate the relationship between the present-day climate and patterns of species richness. We then investigate the consequences of paleoenvironmental dynamics on the emergence of biodiversity gradients using a spatially explicit model of diversification coupled with paleoenvironmental and plate tectonic reconstructions. Contemporary climate is insufficient in explaining the PDD; instead, a simple model of diversification and temperature niche evolution coupled with paleoaridity constraints is successful in reproducing the variation in species richness and phylogenetic diversity seen repeatedly among plant and animal taxa, suggesting a prevalent role of paleoenvironmental dynamics in combination with niche conservatism. The model indicates that high biodiversity in Neotropical and Indomalayan moist forests is driven by complex macroevolutionary dynamics associated with mountain uplift. In contrast, lower diversity in Afrotropical forests is associated with lower speciation rates and higher extinction rates driven by sustained aridification over the Cenozoic. Our analyses provide a mechanistic understanding of the emergence of uneven diversity in tropical moist forests across 110 Ma of Earth's history, highlighting the importance of deep-time paleoenvironmental legacies in determining biodiversity patterns.


Assuntos
Biodiversidade , Florestas , Clima Tropical , Animais , Evolução Biológica , Planeta Terra
16.
Nature ; 546(7656): 141-144, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28538726

RESUMO

Different facets of biodiversity other than species numbers are increasingly appreciated as critical for maintaining the function of ecosystems and their services to humans. While new international policy and assessment processes such as the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) recognize the importance of an increasingly global, quantitative and comprehensive approach to biodiversity protection, most insights are still focused on a single facet of biodiversity-species. Here we broaden the focus and provide an evaluation of how much of the world's species, functional and phylogenetic diversity of birds and mammals is currently protected and the scope for improvement. We show that the large existing gaps in the coverage for each facet of diversity could be remedied by a slight expansion of protected areas: an additional 5% of the land has the potential to more than triple the protected range of species or phylogenetic or functional units. Further, the same areas are often priorities for multiple diversity facets and for both taxa. However, we find that the choice of conservation strategy has a fundamental effect on outcomes. It is more difficult (that is, requires more land) to maximize basic representation of the global biodiversity pool than to maximize local diversity. Overall, species and phylogenetic priorities are more similar to each other than they are to functional priorities, and priorities for the different bird biodiversity facets are more similar than those of mammals. Our work shows that large gains in biodiversity protection are possible, while also highlighting the need to explicitly link desired conservation objectives and biodiversity metrics. We provide a framework and quantitative tools to advance these goals for multi-faceted biodiversity conservation.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Internacionalidade , Animais , Aves/classificação , Política Ambiental , Mamíferos/classificação , Filogenia
17.
Proc Biol Sci ; 289(1975): 20220091, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35611527

RESUMO

How and why lineages evolve along with niche space as they diversify and adapt to different environments is fundamental to evolution. Progress has been hampered by the difficulties of linking a robust empirical characterization of species niches with flexible evolutionary models that describe their evolution. Consequently, the relative influence of abiotic and biotic factors remains poorly understood. Here, we characterize species' two-dimensional temperature and precipitation niche space occupied (i.e. species niche envelope) as complex geometries and assess their evolution across all Aves using a model that captures heterogeneous evolutionary rates on time-calibrated phylogenies. We find that extant birds coevolved from warm, mesic climatic niches into colder and drier environments and responded to the Cretaceous-Palaeogene (K-Pg) boundary with a dramatic increase in disparity. Contrary to expectations of subsiding rates of niche evolution, our results show that overall rates have increased steadily, with some lineages experiencing exceptionally high evolutionary rates, associated with the colonization of novel niche spaces, and others showing niche stasis. Both competition- and environmental change-driven niche evolution transpire and result in highly heterogeneous rates near the present. Our findings highlight the growing ecological and conservation insights arising from the model-based integration of comprehensive environmental and phylogenetic information.


Assuntos
Evolução Biológica , Ecossistema , Animais , Aves , Filogenia , Temperatura
18.
PLoS Biol ; 17(12): e3000494, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31800571

RESUMO

Big, time-scaled phylogenies are fundamental to connecting evolutionary processes to modern biodiversity patterns. Yet inferring reliable phylogenetic trees for thousands of species involves numerous trade-offs that have limited their utility to comparative biologists. To establish a robust evolutionary timescale for all approximately 6,000 living species of mammals, we developed credible sets of trees that capture root-to-tip uncertainty in topology and divergence times. Our "backbone-and-patch" approach to tree building applies a newly assembled 31-gene supermatrix to two levels of Bayesian inference: (1) backbone relationships and ages among major lineages, using fossil node or tip dating, and (2) species-level "patch" phylogenies with nonoverlapping in-groups that each correspond to one representative lineage in the backbone. Species unsampled for DNA are either excluded ("DNA-only" trees) or imputed within taxonomic constraints using branch lengths drawn from local birth-death models ("completed" trees). Joining time-scaled patches to backbones results in species-level trees of extant Mammalia with all branches estimated under the same modeling framework, thereby facilitating rate comparisons among lineages as disparate as marsupials and placentals. We compare our phylogenetic trees to previous estimates of mammal-wide phylogeny and divergence times, finding that (1) node ages are broadly concordant among studies, and (2) recent (tip-level) rates of speciation are estimated more accurately in our study than in previous "supertree" approaches, in which unresolved nodes led to branch-length artifacts. Credible sets of mammalian phylogenetic history are now available for download at http://vertlife.org/phylosubsets, enabling investigations of long-standing questions in comparative biology.


Assuntos
Mamíferos/classificação , Animais , Teorema de Bayes , Biodiversidade , Evolução Biológica , Simulação por Computador , Evolução Molecular , Fósseis , Filogenia , Software , Especificidade da Espécie
19.
J Anim Ecol ; 91(7): 1334-1344, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35388473

RESUMO

Individual decisions regarding how, why and when organisms interact with one another and with their environment scale up to shape patterns and processes in communities. Recent evidence has firmly established the prevalence of intraspecific variation in nature and its relevance in community ecology, yet challenges associated with collecting data on large numbers of individual conspecifics and heterospecifics have hampered integration of individual variation into community ecology. Nevertheless, recent technological and statistical advances in GPS-tracking, remote sensing and behavioural ecology offer a toolbox for integrating intraspecific variation into community processes. More than simply describing where organisms go, movement data provide unique information about interactions and environmental associations from which a true individual-to-community framework can be built. By linking the movement paths of both conspecifics and heterospecifics with environmental data, ecologists can now simultaneously quantify intraspecific and interspecific variation regarding the Eltonian (biotic interactions) and Grinnellian (environmental conditions) factors underpinning community assemblage and dynamics, yet substantial logistical and analytical challenges must be addressed for these approaches to realize their full potential. Across communities, empirical integration of Eltonian and Grinnellian factors can support conservation applications and reveal metacommunity dynamics via tracking-based dispersal data. As the logistical and analytical challenges associated with multi-species tracking are surmounted, we envision a future where individual movements and their ecological and environmental signatures will bring resolution to many enduring issues in community ecology.


Assuntos
Ecologia , Movimento , Animais , Ecossistema , Telemetria
20.
Ecol Lett ; 24(2): 196-207, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33124188

RESUMO

Mountain systems are exceptionally species rich, yet the associated elevational gradients in functional and phylogenetic diversity and their consistency across latitude remain little understood. Here, we document how avian functional and phylogenetic diversity and structure vary along all major elevational gradients worldwide and uncover strong latitudinal differences. Assemblages in warm tropical lowlands and cold temperate highlands are marked by high functional overdispersion and distinctiveness, whereas tropical highlands and temperate lowlands appear strongly functionally clustered and redundant. We additionally find strong geographic variation in the interplay of phylogenetic and functional structure, with strongest deviations between the two in temperate highlands. This latitudinal and elevational variation in assemblage functional structure is underpinned by nuanced shifts in the position, shape and composition of multivariate trait space. We find that, independent of latitude, high-elevation assemblages emerge as exceptionally susceptible to functional change.


Assuntos
Biodiversidade , Aves , Animais , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA