Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Semin Cell Dev Biol ; 144: 97-102, 2023 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35339359

RESUMO

Advances in the field of human stem cells are often a source of public and ethical controversy. Researchers must frequently balance diverse societal perspectives on questions of morality with the pursuit of medical therapeutics and innovation. Recent developments in brain organoids make this challenge even more acute. Brain organoids are a new class of brain surrogate generated from human pluripotent stem cells (hPSCs). They have gained traction as a model for studying the intricacies of the human brain by using advancements in stem cell biology to recapitulate aspects of the developing human brain in vitro. However, recent observation of neural oscillations spontaneously emerging from these organoids raises the question of whether brain organoids are or could become conscious. At the same time, brain organoids offer a potentially unique opportunity to scientifically understand consciousness. To address these issues, experimental biologists, philosophers, and ethicists united to discuss the possibility of consciousness in human brain organoids and the consequent ethical and moral implications.


Assuntos
Estado de Consciência , Células-Tronco Pluripotentes , Humanos , Status Moral , Encéfalo , Organoides
2.
Stem Cell Reports ; 19(8): 1074-1091, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39059378

RESUMO

Although microglia are macrophages of the central nervous system, their involvement is not limited to immune functions. The roles of microglia during development in humans remain poorly understood due to limited access to fetal tissue. To understand how microglia can impact human neurodevelopment, the methyl-CpG binding protein 2 (MECP2) gene was knocked out in human microglia-like cells (MGLs). Disruption of the MECP2 in MGLs led to transcriptional and functional perturbations, including impaired phagocytosis. The co-culture of healthy MGLs with MECP2-knockout (KO) neurons rescued synaptogenesis defects, suggesting a microglial role in synapse formation. A targeted drug screening identified ADH-503, a CD11b agonist, restored phagocytosis and synapse formation in spheroid-MGL co-cultures, significantly improved disease progression, and increased survival in MeCP2-null mice. These results unveil a MECP2-specific regulation of human microglial phagocytosis and identify a novel therapeutic treatment for MECP2-related conditions.


Assuntos
Proteína 2 de Ligação a Metil-CpG , Microglia , Transtornos do Neurodesenvolvimento , Fagocitose , Microglia/metabolismo , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Animais , Camundongos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/patologia , Técnicas de Cocultura , Modelos Animais de Doenças , Camundongos Knockout , Sinapses/metabolismo , Neurônios/metabolismo
3.
Sci Rep ; 9(1): 19291, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848365

RESUMO

The goal of stem cell therapy for spinal cord injury (SCI) is to restore motor function without exacerbating pain. Induced pluripotent stem cells (iPSC) may be administered by autologous transplantation, avoiding immunologic challenges. Identifying strategies to optimize iPSC-derived neural progenitor cells (hiNPC) for cell transplantation is an important objective. Herein, we report a method that takes advantage of the growth factor-like and anti-inflammatory activities of the fibrinolysis protease, tissue plasminogen activator tPA, without effects on hemostasis. We demonstrate that conditioning hiNPC with enzymatically-inactive tissue-type plasminogen activator (EI-tPA), prior to grafting into a T3 lesion site in a clinically relevant severe SCI model, significantly improves motor outcomes. EI-tPA-primed hiNPC grafted into lesion sites survived, differentiated, acquired markers of motor neuron maturation, and extended ßIII-tubulin-positive axons several spinal segments below the lesion. Importantly, only SCI rats that received EI-tPA primed hiNPC demonstrated significantly improved motor function, without exacerbating pain. When hiNPC were treated with EI-tPA in culture, NMDA-R-dependent cell signaling was initiated, expression of genes associated with stemness (Nestin, Sox2) was regulated, and thrombin-induced cell death was prevented. EI-tPA emerges as a novel agent capable of improving the efficacy of stem cell therapy in SCI.


Assuntos
Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Traumatismos da Medula Espinal/terapia , Ativador de Plasminogênio Tecidual/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/fisiologia , Ratos , Recuperação de Função Fisiológica , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/fisiopatologia , Transplante de Células-Tronco , Células-Tronco/efeitos dos fármacos , Ativador de Plasminogênio Tecidual/química , Ativador de Plasminogênio Tecidual/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA