Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-35572209

RESUMO

Real-time dynamic simulation remains a significant challenge for spatiotemporal data of high dimension and resolution. In this study, we establish a transformer neural network (TNN) originally developed for natural language processing and a separate convolutional neural network (CNN) to estimate five-dimensional (5D) spatiotemporal brain-skull relative displacement resulting from impact (isotropic spatial resolution of 4 mm with temporal resolution of 1 ms). Sequential training is applied to train (N = 5184 samples) the two neural networks for estimating the complete 5D displacement across a temporal duration of 60 ms. We find that TNN slightly but consistently outperforms CNN in accuracy for both displacement and the resulting voxel-wise four-dimensional (4D) maximum principal strain (e.g., root mean squared error (RMSE) of ~1.0% vs. ~1.6%, with coefficient of determination, R 2 >0.99 vs. >0.98, respectively, and normalized RMSE (NRMSE) at peak displacement of 2%-3%, based on an independent testing dataset; N = 314). Their accuracies are similar for a range of real-world impacts drawn from various published sources (dummy, helmet, football, soccer, and car crash; average RMSE/NRMSE of ~0.3 mm/~4%-5% and average R 2 of ~0.98 at peak displacement). Sequential training is effective for allowing instantaneous estimation of 5D displacement with high accuracy, although TNN poses a heavier computational burden in training. This work enables efficient characterization of the intrinsically dynamic brain strain in impact critical for downstream multiscale axonal injury model simulation. This is also the first application of TNN in biomechanics, which offers important insight into how real-time dynamic simulations can be achieved across diverse engineering fields.

2.
J Biomech Eng ; 143(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33954705

RESUMO

Head injury model validation has evolved from against pressure to relative brain-skull displacement, and more recently, against marker-based strain. However, there are concerns on strain data quality. In this study, we parametrically investigate how displacement random errors and synchronization errors propagate into strain. Embedded markers from four representative configurations are used to form unique and nonoverlapping tetrahedrons, triangles, and linear elements. Marker displacements are then separately subjected to up to ±10% random displacement errors and up to ±2 ms synchronization errors. Based on 100 random trials in each perturbation test, we find that smaller strain errors relative to the baseline peak strains are significantly associated with larger element sizes (volume, area, or length; p < 0.05). When displacement errors are capped at the two extreme levels, the earlier "column" and "cluster" configurations provide few usable elements with relative strain error under an empirical threshold of 20%, while about 30-80% of elements in recent "repeatable" and "uniform" configurations are considered otherwise usable. Overall, denser markers are desired to provide exhaustive pairwise linear elements with a range of sizes to balance the need for larger elements to minimize strain error but smaller elements to increase the spatial resolution in strain sampling. Their signed strains also provide unique and unambiguous information on tissue tension and compression. This study may provide useful insights into the scrutinization of existing experimental data for head injury model strain validation and to inform how best to design new experiments in the future.


Assuntos
Encéfalo
4.
IEEE Trans Biomed Eng ; PP2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652634

RESUMO

OBJECTIVE: Impact kinematics are widely employed to investigate mechanisms of traumatic brain injury (TBI). However, they are susceptible to noise and artefacts; thus, require data filtering. Few studies have focused on how data filtering affects brain strain most relevant to TBI. Here, we report that impact-induced brain strains are much less sensitive to data filtering than kinematics based on three filtering methods: CFC180, lowpass 200Hz, and a new method called Head Exposure to Acceleration Database in Sport (HEADSport). METHODS: Using mouthguard-measured head impacts in elite rugby (N=5694), average Euclidean distances between the three filtered angular velocity profiles and their unfiltered counterparts are used to identify three groups of impacts with large variations: 90-95th, 95-99th, and >99th percentile. From each group, 20 impacts are randomly selected for simulation using the anisotropic Worcester Head Injury Model (WHIM) V1.0. RESULTS AND CONCLUSION: HEADSport and CFC180 are the most and least effective, respectively, in suppressing "unphysical artefacts" shown as sharp spikes with a rather short impulse duration (e.g., <3 ms) in angular velocity. However, maximum principal strain (MPS), especially that in the corpus callosum, is much less sensitive to data filtering compared to kinematic peaks (e.g., reduction of 3% vs. 47% and 90% for peak angular velocity and acceleration with HEADSport for impacts of >99th percentile). SIGNIFICANCE: These findings confirm that the brain acts as a low-pass filter, itself, to suppress high frequency noise in impact kinematics. Therefore, brain strain can serve as a common metric for TBI biomechanical studies to maximize relevance to the injury, as it is not sensitive to kinematic filters.

5.
Comput Biol Med ; 171: 108109, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364663

RESUMO

Contemporary biomechanical modeling of traumatic brain injury (TBI) focuses on either the global brain as an organ or a representative tiny section of a single axon. In addition, while it is common for a global brain model to employ real-world impacts as input, axonal injury models have largely been limited to inputs of either tension or compression with assumed peak strain and strain rate. These major gaps between global and microscale modeling preclude a systematic and mechanistic investigation of how tissue strain from impact leads to downstream axonal damage throughout the white matter. In this study, a unique subject-specific multimodality dataset from a male ice-hockey player sustaining a diagnosed concussion is used to establish an efficient and scalable computational pipeline. It is then employed to derive voxelized brain deformation, maximum principal strains and white matter fiber strains, and finally, to produce diverse fiber strain profiles of various shapes in temporal history necessary for the development and application of a deep learning axonal injury model in the future. The pipeline employs a structured, voxelized representation of brain deformation with adjustable spatial resolution independent of model mesh resolution. The method can be easily extended to other head impacts or individuals. The framework established in this work is critical for enabling large-scale (i.e., across the entire white matter region, head impacts, and individuals) and multiscale (i.e., from organ to cell length scales) modeling for the investigation of traumatic axonal injury (TAI) triggering mechanisms. Ultimately, these efforts could enhance the assessment of concussion risks and design of protective headgear. Therefore, this work contributes to improved strategies for concussion detection, mitigation, and prevention.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Masculino , Humanos , Concussão Encefálica/diagnóstico por imagem , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Axônios , Cabeça
6.
J Neurotrauma ; 40(19-20): 2217-2232, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37335051

RESUMO

Existing axonal finite element models do not consider sex morphological differences or the fidelity in dynamic input. To facilitate a systematic investigation into the micromechanics of diffuse axonal injury, we develop a parameterized modeling approach for automatic and efficient generation of sex-specific axonal models according to specified geometrical parameters. Baseline female and male axonal models in the corpus callosum with random microtubule (MT) gap configurations are generated for model calibration and evaluation. They are then used to simulate a realistic tensile loading consisting of both a loading and a recovery phase (to return to an initial undeformed state) generated from dynamic corpus callosum fiber strain in a real-world head impact simulation. We find that MT gaps and the dynamic recovery phase are both critical to successfully reproduce MT undulation as observed experimentally, which has not been reported before. This strengthens confidence in model dynamic responses. A statistical approach is further employed to aggregate axonal responses from a large sample of random MT gap configurations for both female and male axonal models (n = 10,000 each). We find that peak strains in MTs and the Ranvier node and associated neurofilament failures in female axons are substantially higher than those in male axons because there are fewer MTs in the former and also because of the random nature of MT gap locations. Despite limitations in various model assumptions as a result of limited experimental data currently available, these findings highlight the need to systematically characterize MT gap configurations and to ensure a realistic model input for axonal dynamic simulations. Finally, this study may offer fresh and improved insight into the biomechanical basis of sex differences in brain injury, and sets the stage for more systematic investigations at the microscale in the future, both numerically and experimentally.


Assuntos
Lesões Encefálicas , Caracteres Sexuais , Feminino , Masculino , Humanos , Análise de Elementos Finitos , Axônios/fisiologia , Nós Neurofibrosos
7.
J Neurotrauma ; 40(19-20): 2233-2247, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37212255

RESUMO

The brain injury modeling community has recommended improving model subject specificity and simulation efficiency. Here, we extend an instantaneous (< 1 sec) convolutional neural network (CNN) brain model based on the anisotropic Worcester Head Injury Model (WHIM) V1.0 to account for strain differences due to individual morphological variations. Linear scaling factors relative to the generic WHIM along the three anatomical axes are used as additional CNN inputs. To generate training samples, the WHIM is randomly scaled to pair with augmented head impacts randomly generated from real-world data for simulation. An estimation of voxelized peak maximum principal strain of the whole-brain is said to be successful when the linear regression slope and Pearson's correlation coefficient relative to directly simulated do not deviate from 1.0 (when identical) by more than 0.1. Despite a modest training dataset (N = 1363 vs. ∼5.7 k previously), the individualized CNN achieves a success rate of 86.2% in cross-validation for scaled model responses, and 92.1% for independent generic model testing for impacts considered as complete capture of kinematic events. Using 11 scaled subject-specific models (with scaling factors determined from pre-established regression models based on head dimensions and sex and age information, and notably, without neuroimages), the morphologically individualized CNN remains accurate for impacts that also yield successful estimations for the generic WHIM. The individualized CNN instantly estimates subject-specific and spatially detailed peak strains of the entire brain and thus, supersedes others that report a scalar peak strain value incapable of informing the location of occurrence. This tool could be especially useful for youths and females due to their anticipated greater morphological differences relative to the generic model, even without the need for individual neuroimages. It has potential for a wide range of applications for injury mitigation purposes and the design of head protective gears. The voxelized strains also allow for convenient data sharing and promote collaboration among research groups.


Assuntos
Lesões Encefálicas , Aprendizado Profundo , Feminino , Adolescente , Humanos , Redes Neurais de Computação , Simulação por Computador , Fenômenos Biomecânicos
8.
Ann Biomed Eng ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37642795

RESUMO

The large amount of training samples required to develop a deep learning brain injury model demands enormous computational resources. Here, we study how a transformer neural network (TNN) of high accuracy can be used to efficiently generate pretraining samples for a convolutional neural network (CNN) brain injury model to reduce computational cost. The samples use synthetic impacts emulating real-world events or augmented impacts generated from limited measured impacts. First, we verify that the TNN remains highly accurate for the two impact types (N = 100 each; [Formula: see text] of 0.948-0.967 with root mean squared error, RMSE, ~ 0.01, for voxelized peak strains). The TNN-estimated samples (1000-5000 for each data type) are then used to pretrain a CNN, which is further finetuned using directly simulated training samples (250-5000). An independent measured impact dataset considered of complete capture of impact event is used to assess estimation accuracy (N = 191). We find that pretraining can significantly improve CNN accuracy via transfer learning compared to a baseline CNN without pretraining. It is most effective when the finetuning dataset is relatively small (e.g., 2000-4000 pretraining synthetic or augmented samples improves success rate from 0.72 to 0.81 with 500 finetuning samples). When finetuning samples reach 3000 or more, no obvious improvement occurs from pretraining. These results support using the TNN to rapidly generate pretraining samples to facilitate a more efficient training strategy for future deep learning brain models, by limiting the number of costly direct simulations from an alternative baseline model. This study could contribute to a wider adoption of deep learning brain injury models for large-scale predictive modeling and ultimately, enhancing safety protocols and protective equipment.

9.
Biomech Model Mechanobiol ; 22(1): 159-175, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36201071

RESUMO

Most human head/brain models represent a generic adult male head/brain. They may suffer in accuracy when investigating traumatic brain injury (TBI) on a subject-specific basis. Subject-specific models can be developed from neuroimages; however, neuroimages are not typically available in practice. In this study, we establish simple and elegant regression models between brain outer surface morphology and head dimensions measured from neuroimages along with age and sex information (N = 191; 141 males and 50 females with age ranging 14-25 years). The regression models are then used to approximate subject-specific brain models by scaling a generic counterpart, without using neuroimages. Model geometrical accuracy is assessed using adjusted [Formula: see text] and absolute percentage error (e.g., 0.720 and 3.09 ± 2.38%, respectively, for brain volume when incorporating tragion-to-top). For a subset of 11 subjects (from smallest to largest in brain volume), impact-induced brain strains are compared with those from "morphed models" derived from neuroimage-based mesh warping. We find that regional peak strains from the scaled subject-specific models are comparable to those of the morphed counterparts but could be considerably different from those of the generic model (e.g., linear regression slope of 1.01-1.03 for gray and white matter regions versus 1.16-1.19, or up to ~ 20% overestimation for the smallest brain studied). These results highlight the importance of incorporating brain morphological variations in impact simulation and demonstrate the feasibility of approximating subject-specific brain models without neuroimages using age, sex, and easily measurable head dimensions. The scaled models may improve subject specificity for future TBI investigations.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Substância Branca , Feminino , Masculino , Humanos , Adolescente , Adulto Jovem , Adulto , Encéfalo , Cabeça
10.
Sci Rep ; 13(1): 7750, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173370

RESUMO

The advent of mobile devices, wearables and digital healthcare has unleashed a demand for accurate, reliable, and non-interventional ways to measure continuous blood pressure (BP). Many consumer products claim to measure BP with a cuffless device, but their lack of accuracy and reliability limit clinical adoption. Here, we demonstrate how multimodal feature datasets, comprising: (i) pulse arrival time (PAT); (ii) pulse wave morphology (PWM), and (iii) demographic data, can be combined with optimized Machine Learning (ML) algorithms to estimate Systolic BP (SBP), Diastolic BP (DBP) and Mean Arterial Pressure (MAP) within a 5 mmHg bias of the gold standard Intra-Arterial BP, well within the acceptable limits of the IEC/ANSI 80601-2-30 (2018) standard. Furthermore, DBP's calculated using 126 datasets collected from 31 hemodynamically compromised patients had a standard deviation within 8 mmHg, while SBP's and MAP's exceeded these limits. Using ANOVA and Levene's test for error means and standard deviations, we found significant differences in the various ML algorithms but found no significant differences amongst the multimodal feature datasets. Optimized ML algorithms and key multimodal features obtained from larger real-world data (RWD) sets could enable more reliable and accurate estimation of continuous BP in cuffless devices, accelerating wider clinical adoption.


Assuntos
Determinação da Pressão Arterial , Fotopletismografia , Humanos , Pressão Sanguínea/fisiologia , Reprodutibilidade dos Testes , Algoritmos , Aprendizado de Máquina , Análise de Onda de Pulso
11.
Med Phys ; 39(12): 7540-52, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23231302

RESUMO

PURPOSE: Accurate patient registration is crucial for effective image-guidance in open cranial surgery. Typically, it is accomplished by matching skin-affixed fiducials manually identified in the operating room (OR) with their counterparts in the preoperative images, which not only consumes OR time and personnel resources but also relies on the presence (and subsequent fixation) of the fiducials during the preoperative scans (until the procedure begins). In this study, the authors present a completely automatic, volumetric image-based patient registration technique that does not rely on fiducials by registering tracked (true) 3D ultrasound (3DUS) directly with preoperative magnetic resonance (MR) images. METHODS: Multistart registrations between binary 3DUS and MR volumes were first executed to generate an initial starting point without incorporating prior information on the US transducer contact point location or orientation for subsequent registration between grayscale 3DUS and MR via maximization of either mutual information (MI) or correlation ratio (CR). Patient registration was then computed through concatenation of spatial transformations. RESULTS: In ten (N = 10) patient cases, an average fiducial (marker) distance error (FDE) of 5.0 mm and 4.3 mm was achieved using MI or CR registration (FDE was smaller with CR vs MI in eight of ten cases), which are comparable to values reported for typical fiducial- or surface-based patient registrations. The translational and rotational capture ranges were found to be 24.0 mm and 27.0° for binary registrations (up to 32.8 mm and 36.4°), 12.2 mm and 25.6° for MI registrations (up to 18.3 mm and 34.4°), and 22.6 mm and 40.8° for CR registrations (up to 48.5 mm and 65.6°), respectively. The execution time to complete a patient registration was 12-15 min with parallel processing, which can be significantly reduced by confining the 3DUS transducer location to the center of craniotomy in MR before registration (an execution time of 5 min is achievable). CONCLUSIONS: Because common features deep in the brain and throughout the surgical volume of interest are used, intraoperative fiducial-less patient registration is possible on-demand, which is attractive in cases where preoperative patient registration is compromised (e.g., from loss∕movement of skin-affixed fiducials) or not possible (e.g., in cases of emergency when external fiducials were not placed in time). CR registration was more robust than MI (capture range about twice as big) and appears to be more accurate, although both methods are comparable to or better than fiducial-based registration in the patient cases evaluated. The results presented here suggest that 3DUS image-based patient registration holds promise for clinical application in the future.


Assuntos
Encefalopatias/diagnóstico por imagem , Encefalopatias/cirurgia , Ecoencefalografia/métodos , Imageamento Tridimensional/métodos , Reconhecimento Automatizado de Padrão/métodos , Técnica de Subtração , Cirurgia Assistida por Computador/métodos , Algoritmos , Marcadores Fiduciais , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
J Mech Behav Biomed Mater ; 126: 104967, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34863650

RESUMO

Cerebral vascular injury (CVI) is a frequent consequence of traumatic brain injury but has often been neglected. Substantial experimental work exists on vascular material properties and failure/subfailure thresholds. However, little is known about vascular in vivo loading conditions in dynamic head impact, which is necessary to investigate the risk, severity, and extent of CVI. In this study, we resort to the Worcester Head Injury Model (WHIM) V2.1 for investigation. The model embeds the cerebral vasculature network and is further upgraded to incorporate brain material property heterogeneity based on magnetic resonance elastography. The brain material property is calibrated to match with the previously validated anisotropic V1.0 version in terms of whole-brain strains against six experimental datasets of a wide range of blunt impact conditions. The upgraded WHIM is finally used to simulate five representative real-world head impacts drawn from contact sports and automotive crashes. We find that peak strains in veins are considerably higher than those in arteries and that peak circumferential strains are also higher than peak axial strains. For a typical concussive head impact, cerebral vascular axial strains reach the lowest reported yield strain of ∼7-8%. For severe automotive impacts, axial strains could reach ∼20%, which is on the order of the lowest reported ultimate failure strain of ∼24%. These results suggest in vivo mechanical loading conditions of the cerebral vasculature (excluding bridging veins not assessed here) due to rapid head rotation are at the lower end of failure/subfailure thresholds established from ex vivo experiments. This study provides some first insight into the risk, severity, and extent of CVI in real-world head impacts.


Assuntos
Concussão Encefálica , Lesões Encefálicas , Traumatismos Craniocerebrais , Encéfalo , Cabeça , Humanos
13.
Comput Methods Programs Biomed ; 213: 106528, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34808529

RESUMO

BACKGROUND AND OBJECTIVE: It is common to combine biomechanical modeling and medical images for multimodal analyses. However, mesh-image mismatch may occur that prevents direct information exchange. To eliminate mesh-image mismatch, we develop a simple but elegant displacement voxelization technique based on image voxel corner nodes to achieve voxel-wise strain. We then apply the technique to derive dense white matter fiber strains along whole-brain tractography (∼35 k fiber tracts consisting of ∼3.3 million sampling points) resulting from head impact. METHODS: Displacements at image voxel corner nodes are first obtained from model simulation via scattered interpolation. Each voxel is then scaled linearly to form a unit hexahedral element. This allows convenient and efficient voxel-wise strain tensor calculation and displacement interpolation at arbitrary fiber sampling points via shape functions. Fiber strains from displacement interpolation are then compared with those from the commonly used strain tensor projection using either voxel- or element-wise strain tensors. RESULTS: Based on a synthetic displacement field, fiber strains interpolated from voxelized displacement are considerably more accurate than those from strain tensor projection relative to the prescribed ground-truth (determinant of coefficient (R2) of 1.00 and root mean squared error (RMSE) of 0.01 vs. 0.87 and 0.10, respectively). For a set of real-world reconstructed head impacts (N = 53), the strain tensor projection method performs similarly poorly (R2 of 0.80-0.90 and RMSE of 0.03-0.07), with overestimation strongly correlated with strain magnitude (Pearson correlation coefficient >0.9). Up to ∼15% of the fiber strains are overestimated by more than the lower bound of a conservative injury threshold of 0.09. The percentage increases to ∼37% when halving the threshold. Voxel interpolation is also significantly more efficient (15 s vs. 40 s for element strain tensor projection, without parallelization). CONCLUSIONS: Voxelized displacement interpolation is considerably more accurate and efficient in deriving dense white matter fiber strains than strain tensor projection. The latter generally overestimates with overestimation magnitude strongly correlating with fiber strain magnitude. Displacement voxelization is an effective technique to eliminate mesh-image mismatch and generates a convenient image representation of tissue deformation. This technique can be generalized to broadly facilitate a diverse range of image-related biomechanical problems for multimodal analyses. The convenient image format may also promote and facilitate biomechanical data sharing in the future.


Assuntos
Processamento de Imagem Assistida por Computador , Substância Branca , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Substância Branca/diagnóstico por imagem
14.
Ann Biomed Eng ; 50(11): 1498-1509, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35816264

RESUMO

Brain strain is increasingly being used in helmet design and safety performance evaluation as it is generally considered as the primary mechanism of concussion. In this study, we investigate whether different helmet designs can meaningfully alter brain strains using two commonly used metrics, peak maximum principal strain (MPS) of the whole brain and cumulative strain damage measure (CSDM). A convolutional neural network (CNN) that instantly produces detailed brain strains is first tested for accuracy for helmeted head impacts. Based on N = 144 impacts in 12 impact conditions from three random and representative helmet models, we conclude that the CNN is sufficiently accurate for helmet testing applications, for elementwise MPS (success rate of 98.6%), whole-brain peak MPS and CSDM (coefficient of determination of 0.977 and 0.980, with root mean squared error of 0.015 and 0.029, respectively). We then apply the technique to 23 football helmet models (N = 1104 impacts) to reproduce elementwise MPS. Assuming a concussion would occur when peak MPS or CSDM exceeds a threshold, we sweep their thresholds across the value ranges to evaluate the number of predicted hypothetical concussions that different helmets sustain across the impact conditions. Relative to the 12 impact conditions tested, we find that the "best" and "worst" helmets differ by an average of 22.5% in terms of predicted concussions, ranging from 0 to 42% (the latter achieved at the threshold value of 0.28 for peak MPS and 0.4 for CSDM, respectively). Such a large variation among helmets in strain-based concussion predictions demonstrate that helmet designs can still be optimized in a clinically meaningful way. The robustness and accuracy of the CNN tool also suggest its potential for routine use for helmet design and safety performance evaluation in the future. The CNN is freely available online at https://github.com/Jilab-biomechanics/CNN-brain-strains .


Assuntos
Concussão Encefálica , Futebol Americano , Humanos , Dispositivos de Proteção da Cabeça , Fenômenos Biomecânicos , Concussão Encefálica/prevenção & controle , Encéfalo , Aceleração
15.
Artigo em Inglês | MEDLINE | ID: mdl-35350121

RESUMO

Change in vertebral position between preoperative imaging and the surgical procedure reduces the accuracy of image-guided spinal surgery, requiring repeated imaging and surgical field registration, a process that takes time and exposes patients to additional radiation. We developed a handheld, camera-based, deformable registration system (intraoperative stereovision, iSV) to register the surgical field automatically and compensate for spinal motion during surgery without further radiation exposure. Methods: We measured motion-induced errors in image-guided lumbar pedicle screw placement in 6 whole-pig cadavers using state-of-the-art commercial spine navigation (StealthStation; Medtronic) and iSV registration that compensates for intraoperative vertebral motion. We induced spinal motion by using preoperative computed tomography (pCT) of the lumbar spine performed in the supine position with accentuated lordosis and performing surgery with the animal in the prone position. StealthStation registration of pCT occurred using metallic fiducial markers implanted in each vertebra, and iSV data were acquired to perform a deformable registration between pCT and the surgical field. Sixty-eight pedicle screws were placed in 6 whole-pig cadavers using iSV and StealthStation registrations in random order of vertebral level, relying only on image guidance without invoking the surgeon's judgment. The position of each pedicle screw was assessed with post-procedure CT and confirmed via anatomical dissection. Registration errors were assessed on the basis of implanted fiducials. Results: The frequency and severity of pedicle screw perforation were lower for iSV registration compared with StealthStation (97% versus 68% with Grade 0 medial perforation for iSV and StealthStation, respectively). Severe perforation occurred only with StealthStation (18% versus 0% for iSV). The overall time required for iSV registration (computational efficiency) was ∼10 to 15 minutes and was comparable with StealthStation registration (∼10 min). The mean target registration error was smaller for iSV relative to StealthStation (2.81 ± 0.91 versus 8.37 ± 1.76 mm). Conclusions: Pedicle screw placement was more accurate with iSV registration compared with state-of-the-art commercial navigation based on preoperative CT when alignment of the spine changed during surgery. Clinical Relevance: The iSV system compensated for intervertebral motion, which obviated the need for repeated vertebral registration while providing efficient, accurate, radiation-free navigation during open spinal surgery.

16.
J Biomech ; 135: 111036, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35320756

RESUMO

Tissue-level brain responses to sport-related head impacts may be stronger predictors of brain injury risk than head kinematics alone. Despite the importance of accurate impact response estimation, the influence of head morphological variations has not been properly considered due to the limited sizes and shapes of existing computational head models. In this study, we developed 101 subject-specific finite element (FE) head-brain models based on CT scans and a parametric modeling approach to estimate tissue-level brain impact responses (maximal principal strain, MPS) under three head impact conditions. Principal component analysis (PCA) was used to quantify the geometric variations, with statistically significant PCs then selected to predict MPS using a stepwise linear regression model. High adjusted R2 values (0.6-0.9) were achieved in the regression model, suggesting a good model predictability. Brain volume explained the largest variance of 51.3%, and it was highly correlated with MPS, indicating a significant size effect on brain impact responses. This is the first modeling study to systematically consider the influence of morphological variations in the inner skull and scalp on brain tissue impact response.


Assuntos
Lesões Encefálicas , Cabeça , Adolescente , Fenômenos Biomecânicos , Encéfalo , Análise de Elementos Finitos , Cabeça/fisiologia , Humanos , Crânio , Adulto Jovem
17.
Ann Biomed Eng ; 50(11): 1389-1408, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35867314

RESUMO

Head acceleration measurement sensors are now widely deployed in the field to monitor head kinematic exposure in contact sports. The wealth of impact kinematics data provides valuable, yet challenging, opportunities to study the biomechanical basis of mild traumatic brain injury (mTBI) and subconcussive kinematic exposure. Head impact kinematics are translated into brain mechanical responses through physics-based computational simulations using validated brain models to study the mechanisms of injury. First, this article reviews representative legacy and contemporary brain biomechanical models primarily used for blunt impact simulation. Then, it summarizes perspectives regarding the development and validation of these models, and discusses how simulation results can be interpreted to facilitate injury risk assessment and head acceleration exposure monitoring in the context of contact sports. Recommendations and consensus statements are presented on the use of validated brain models in conjunction with kinematic sensor data to understand the biomechanics of mTBI and subconcussion. Mainly, there is general consensus that validated brain models have strong potential to improve injury prediction and interpretation of subconcussive kinematic exposure over global head kinematics alone. Nevertheless, a major roadblock to this capability is the lack of sufficient data encompassing different sports, sex, age and other factors. The authors recommend further integration of sensor data and simulations with modern data science techniques to generate large datasets of exposures and predicted brain responses along with associated clinical findings. These efforts are anticipated to help better understand the biomechanical basis of mTBI and improve the effectiveness in monitoring kinematic exposure in contact sports for risk and injury mitigation purposes.


Assuntos
Concussão Encefálica , Esportes , Humanos , Aceleração , Cabeça/fisiologia , Fenômenos Biomecânicos , Encéfalo
18.
J Ultrasound Med ; 30(2): 243-52, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21266563

RESUMO

We compared trilinear interpolation to voxel nearest neighbor and distance-weighted algorithms for fast and accurate processing of true 3-dimensional ultrasound (3DUS) image volumes. In this study, the computational efficiency and interpolation accuracy of the 3 methods were compared on the basis of a simulated 3DUS image volume, 34 clinical 3DUS image volumes from 5 patients, and 2 experimental phantom image volumes. We show that trilinear interpolation improves interpolation accuracy over both the voxel nearest neighbor and distance-weighted algorithms yet achieves real-time computational performance that is comparable to the voxel nearest neighbor algrorithm (1-2 orders of magnitude faster than the distance-weighted algorithm) as well as the fastest pixel-based algorithms for processing tracked 2-dimensional ultrasound images (0.035 seconds per 2-dimesional cross-sectional image [76,800 pixels interpolated, or 0.46 ms/1000 pixels] and 1.05 seconds per full volume with a 1-mm(3) voxel size [4.6 million voxels interpolated, or 0.23 ms/1000 voxels]). On the basis of these results, trilinear interpolation is recommended as a fast and accurate interpolation method for rectilinear sampling of 3DUS image acquisitions, which is required to facilitate subsequent processing and display during operating room procedures such as image-guided neurosurgery.


Assuntos
Imageamento Tridimensional , Processamento de Sinais Assistido por Computador , Cirurgia Assistida por Computador , Ultrassonografia , Procedimentos Neurocirúrgicos , Imagens de Fantasmas
19.
Finite Elem Anal Des ; 47(10): 1178-1185, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21731153

RESUMO

Generating subject-specific, all-hexahedral meshes for finite element analysis continues to be of significant interest in biomechanical research communities. To date, most automated methods "morph" an existing atlas mesh to match with a subject anatomy, which usually result in degradation in mesh quality because of mesh distortion. We present an automated meshing technique that produces satisfactory mesh quality and accuracy without mesh repair. An atlas mesh is first developed using a script. A subject-specific mesh is generated with the same script after transforming the geometry into the atlas space following rigid image registration, and is transformed back into the subject space. By meshing the brain in 11 subjects, we demonstrate that the technique's performance is satisfactory in terms of both mesh quality (99.5% of elements had a scaled Jacobian >0.6 while <0.01% were between 0 and 0.2) and accuracy (average distance between mesh boundary and geometrical surface was 0.07 mm while <1% greater than 0.5mm). The combined computational cost for image registration and meshing was <4 min. Our results suggest that the technique is effective for generating subject-specific, all-hexahedral meshes and that it may be useful for meshing a variety of anatomical structures across different biomechanical research fields.

20.
Ann Biomed Eng ; 49(10): 2777-2790, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34341899

RESUMO

Conventional kinematics-based brain injury metrics often approximate peak maximum principal strain (MPS) of the whole brain but ignore the anatomical location of occurrence. In this study, we develop effective impact kinematics consisting of peak rotational velocity and the associated rotational axis to preserve not only peak MPS but also spatially detailed MPS. A pre-computed brain response atlas (pcBRA) serves as a common reference. A training dataset (N = 3069) is used to develop a convolutional neural network (CNN) to automate impact simplification. When preserving peak MPS alone, the CNN-estimated effective peak rotational velocity achieves a coefficient of determination ([Formula: see text]) of ~ 0.96 relative to the directly identified counterpart, far outperforming nominal peak velocity from the resultant profiles ([Formula: see text] of ~ 0.34). Impacts from a subset of data (N = 1900) are also successfully matched with pcBRA idealized impacts based on elementwise MPS, where their regression slope and Pearson correlation coefficient do not deviate from 1.0 (when identical) by more than 0.1. The CNN-estimated effective peak rotation velocity and rotational axis are sufficiently accurate for ~ 73.5% of the impacts. This is not possible for the nominal peak velocity or any other conventional injury metric. The performance may be further improved by expanding the pcBRA to include deceleration and focusing on region-wise strains. This study establishes a new avenue to reduce an arbitrary head impact into an idealized but actual "impact mode" characterized by triplets of basic kinematic variables. They retain specific physical interpretations of head impact and may be an advancement over state-of-the-art kinematics-based scalar metrics for more effective impact comparison in the future.


Assuntos
Encéfalo/fisiopatologia , Traumatismos Craniocerebrais/fisiopatologia , Modelos Biológicos , Fenômenos Biomecânicos , Cabeça , Humanos , Redes Neurais de Computação , Rotação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA