RESUMO
Brain injury caused by stroke has a high rate of mortality and remains a major medical challenge worldwide. In recent years, there has been significant attention given to the use of human Umbilical cord-derived Mesenchymal Stem Cells (hUC-MSCs) for the treatment of stroke in different adult and neonate animal models of stroke. However, using hUC-MSCs by systemic administration to treat ischemic stroke has not been investigated sufficiently. In this study, we conducted various experiments to explore the neuroprotection of hUC-MSCs in rats. Our findings demonstrate that an intravenous injection of a high dose of hUC-MSCs at 2 × 10^7 cells/kg markedly ameliorated brain injury resulting from ischemic stroke. This improvement was observed one day after inducing transient middle cerebral artery occlusion (MCAO) and subsequent reperfusion in rats. Notably, the efficacy of this single administration of hUC-MSCs surpassed that of edaravone, even when the latter was used continuously over three days. Mechanistically, secretory factors derived from hUC-MSCs, such as HGF, BDNF, and TNFR1, ameliorated the levels of MDA and T-SOD to regulate oxidative stress. In particular, TNFR1 also improved the expression of NQO-1 and HO-1, important proteins associated with oxidative stress. More importantly, TNFR1 played a significant role in reducing inflammation by modulating IL-6 levels in the blood. Furthermore, TNFR1 was observed to influence the permeability of the blood-brain barrier (BBB) as demonstrated in the evan's blue experiment and protein expression of ZO-1. This study represented a breakthrough in traditional methods and provided a novel strategy for clinical medication and trials.
Assuntos
AVC Isquêmico , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Estresse Oxidativo , Ratos Sprague-Dawley , Cordão Umbilical , Animais , Estresse Oxidativo/fisiologia , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/citologia , Masculino , AVC Isquêmico/metabolismo , AVC Isquêmico/terapia , Ratos , Inflamação/metabolismo , Lesões Encefálicas/metabolismo , Lesões Encefálicas/terapia , Neuroproteção/fisiologia , Infarto da Artéria Cerebral Média/terapia , Infarto da Artéria Cerebral Média/metabolismoRESUMO
CRF01_AE and CRF07_BC are predominant circulating HIV-1 subtypes in China. In this study, we report two novel HIV-1 CRF01_AE/CRF07_BC recombinant forms isolated from one man who has sex with men (MSM) (BDD027) and one mother-to-child transmission (MTCT) case (BDL123) in Baoding City, Hebei Province, China. The recombination breakpoint analysis showed that the recombination pattern of the near-full-length genome of BDD027 consisted of two CRF07_BC fragments inserted into a CRF01_AE backbone, while the recombination pattern of the near-full-length genome of BDL123 consisted of one CRF01_AE fragment inserted into a CRF07_BC backbone. This study demonstrates the importance of strengthening the monitoring of HIV-1 molecular epidemiological characteristics and emphasizes the urgent need to reduce the HIV-1 epidemic among MSM and MTCT populations in China.
RESUMO
Recombinant HIV-1 genomes identified in three or more epidemiological unrelated individuals are defined as circulating recombinant forms (CRFs). CRFs can further recombine with other pure subtypes or recombinants to produce secondary recombinants. In this study, a new HIV-1 intersubtype CRF, designated CRF159_01103, isolated from three men who have sex with men with no epidemiological linkage, was identified in Baoding city, Hebei Province, China. CRF159_01103 was derived from CRF103_01B and CRF01_AE. Bayesian molecular clock analysis was performed on the CRF01-AE and CRF103_01B regions of CRF159_01103. The time of origin of CRF159_01103 was predicted to be 2018-2019, indicating that it is a recent recombinant virus. The emergence of CRF159_01103 has increased the complexity of the HIV-1 epidemic in Hebei Province.
Assuntos
Infecções por HIV , HIV-1 , Filogenia , Recombinação Genética , HIV-1/genética , HIV-1/classificação , HIV-1/isolamento & purificação , Humanos , China/epidemiologia , Infecções por HIV/virologia , Infecções por HIV/epidemiologia , Masculino , Genoma Viral , Homossexualidade Masculina , Teorema de BayesRESUMO
BACKGROUND: During HIV genotypic drug resistance testing of patient samples in Baoding, Hebei Province, China, in 2022, a recombinant fragment was detected in the pol region of an HIV-1 strain. OBJECTIVE: The objective of the study was to analyze the near full-length genome of a novel HIV-1 CRF01_AE/CRF07_BC recombinant with a complex genomic structure. METHODS: Viral RNA was extracted from the blood of the infected individual and reverse transcribed to cDNA. Two overlapping segments of the HIV-1 genome were amplified using a nearendpoint dilution method and sequenced. Recombinant breakpoints were determined using RIP, jpHMM, and SimPlot 3.5.1 software. MEGA 6.0 software was used to construct a neighbor-joining phylogenetic tree. RESULTS: We obtained the near full-length genome sequence (8680 bp) of a novel HIV-1 CRF01_AE/CRF07_BC recombinant. Recombination analysis showed that the genome comprised at least 12 overlapping segments, including six CRF07_BC and six CRF01_AE segments, with CRF07_BC as the backbone. The emergence of CRF01_AE/CRF07_BC recombinant strains indicated that HIV-1 co-infection is common. However, the increasing genetic complexity of the HIV-1 epidemic in China warrants continued investigation. CONCLUSION: The increase in CRF01_AE/CRF07_BC recombinant viruses suggests that HIV-1 has a high genetic mutation rate in Hebei, China. This highlights the need for close monitoring of HIV-1 molecular epidemiologic changes to provide accurate, up-to-date information for effective disease control.
Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Masculino , Recombinação Genética , Filogenia , Genoma Viral , Análise de Sequência de DNA , China/epidemiologia , Genótipo , Genômica , Homossexualidade MasculinaRESUMO
Poly(hydroxybutyrate) (PHB)/cellulose acetate (CA) blend nanofiber scaffolds were fabricated by electrospinning using the blends of chloroform and DMF as solvent. The blend nanofiber scaffolds were characterized by SEM, FTIR, XRD, DSC, contact angle and tensile test. The blend nanofibers exhibited cylindrical, uniform, bead-free and random orientation with the diameter ranged from 80-680 nm. The scaffolds had very well interconnected porous fibrous network structure and large aspect surface areas. It was found that the presence of CA affected the crystallization of PHB due to formation of intermolecular hydrogen bonds, which restricted the preferential orientation of PHB molecules. The DSC result showed that the PHB and CA were miscible in the blend nanofiber. An increase in the glass transition temperature was observed with increasing CA content. Additionally, the mechanical properties of blend nanofiber scaffolds were largely influenced by the weight ratio of PHB/CA. The tensile strength, yield strength and elongation at break of the blend nanofiber scaffolds increased from 3.3 ± 0.35 MPa, 2.8 ± 0.26 MPa, and 8 ± 0.77% to 5.05 ± 0.52 MPa, 4.6 ± 0.82 MPa, and 17.6 ± 1.24% by increasing PHB content from 60% to 90%, respectively. The water contact angle of blend nanofiber scaffolds decreased about 50% from 112 ± 2.1° to 60 ± 0.75°. The biodegradability was evaluated by in vitro degradation test and the results revealed that the blend nanofiber scaffolds showed much higher degradation rates than the neat PHB. The cytocompatibility of the blend nanofiber scaffolds was preliminarily evaluated by cell adhesion studies. The cells incubated with PHB/CA blend nanofiber scaffold for 48 h were capable of forming cell adhesion and proliferation. It showed much better biocompatibility than pure PHB film. Thus, the prepared PHB/CA blend nanofiber scaffolds are bioactive and may be more suitable for cell proliferation suggesting that these scaffolds can be used for wound dressing or tissue-engineering scaffolds.