Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Med Sci ; 17(7): 953-964, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308549

RESUMO

MicroRNA-19 (miR-19) is identified as the key oncogenic component of the miR-17-92 cluster. When we explored the functions of the dysregulated miR-19 in lung cancer, microarray-based data unexpectedly demonstrated that some immune and inflammatory response genes (i.e., IL32, IFI6 and IFIT1) were generally down-regulated by miR-19 overexpression in A549 cells, which prompted us to fully investigate whether the miR-19 family (i.e., miR-19a and miR-19b-1) was implicated in regulating the expression of immune and inflammatory response genes in cancer cells. In the present study, we observed that miR-19a or miR-19b-1 overexpression by miRNA mimics in the A549, HCC827 and CNE2 cells significantly downregulated the expression of interferon (IFN)-regulated genes (i.e., IRF7, IFI6, IFIT1, IFITM1, IFI27 and IFI44L). Furthermore, the ectopic miR-19a or miR-19b-1 expression in the A549, HCC827, CNE2 and HONE1 cells led to a general downward trend in the expression profile of major histocompatibility complex (MHC) class I genes (such as HLA-B, HLA-E, HLA-F or HLA-G); conversely, miR-19a or miR-19b-1 inhibition by the miRNA inhibitor upregulated the aforementioned MHC Class I gene expression, suggesting that miR-19a or miR-19b-1 negatively modulates MHC Class I gene expression. The miR-19a or miR-19b-1 mimics reduced the expression of interleukin (IL)-related genes (i.e., IL1B, IL11RA and IL6) in the A549, HCC827, CNE2 or HONE1 cells. The ectopic expression of miR-19a or miR-19b-1 downregulated IL32 expression in the A549 and HCC827 cells and upregulated IL32 expression in CNE2 and HONE1 cells. In addition, enforced miR-19a or miR-19b-1 expression suppressed IL-6 production by lung cancer and nasopharyngeal carcinoma (NPC) cells. Taken together, these findings demonstrate, for the first time, that miR-19 can modulate the expression of IFN-induced genes and MHC class I genes in human cancer cells, suggesting a novel role of miR-19 in linking inflammation and cancer, which remains to be fully characterized.


Assuntos
Regulação Neoplásica da Expressão Gênica , Genes MHC Classe I , MicroRNAs/genética , Células A549 , Linhagem Celular Tumoral , Humanos , Interferons/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucinas/genética , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética
2.
Lab Invest ; 99(10): 1484-1500, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31201367

RESUMO

A previous study revealed that therapeutic miR-26a delivery suppresses tumorigenesis in a murine liver cancer model, whereas we found that forced miR-26a expression increased hepatocellular carcinoma (HCC) cell migration and invasion, which prompted us to characterize the causes and mechanisms underlying enhanced invasion due to ectopic miR-26a expression. Gain-of-function and loss-of-function experiments demonstrated that miR-26a promoted migration and invasion of BEL-7402 and HepG2 cells in vitro and positively modulated matrix metalloproteinase (MMP)-1, MMP-2, MMP-9, and MMP-10 expression. In addition, exogenous miR-26a expression significantly enhanced the metastatic ability of HepG2 cells in vivo. miR-26a negatively regulated in vitro proliferation of HCC cells, and miR-26a overexpression suppressed HepG2 cell tumor growth in nude mice. Further studies revealed that miR-26a inhibited cell growth by repressing the methyltransferase EZH2 and promoted cell migration and invasion by inhibiting the phosphatase PTEN. Furthermore, PTEN expression negatively correlated with miR-26a expression in HCC specimens from patients with and without metastasis. Thus, our findings suggest for the first time that miR-26a promotes invasion/metastasis by inhibiting PTEN and inhibits cell proliferation by repressing EZH2 in HCC. More importantly, our data also suggest caution if miR-26a is used as a target for cancer therapy in the future.


Assuntos
Carcinoma Hepatocelular/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Neoplasias Hepáticas/metabolismo , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Animais , Movimento Celular , Feminino , Células Hep G2 , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica
3.
PLoS Genet ; 12(10): e1006308, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27711113

RESUMO

miR-155 plays critical roles in numerous physiological and pathological processes, however, its function in the regulation of blood glucose homeostasis and insulin sensitivity and underlying mechanisms remain unknown. Here, we reveal that miR-155 levels are downregulated in serum from type 2 diabetes (T2D) patients, suggesting that miR-155 might be involved in blood glucose control and diabetes. Gain-of-function and loss-of-function studies in mice demonstrate that miR-155 has no effects on the pancreatic ß-cell proliferation and function. Global transgenic overexpression of miR-155 in mice leads to hypoglycaemia, improved glucose tolerance and insulin sensitivity. Conversely, miR-155 deficiency in mice causes hyperglycemia, impaired glucose tolerance and insulin resistance. In addition, consistent with a positive regulatory role of miR-155 in glucose metabolism, miR-155 positively modulates glucose uptake in all cell types examined, while mice overexpressing miR-155 transgene show enhanced glycolysis, and insulin-stimulated AKT and IRS-1 phosphorylation in liver, adipose tissue or skeletal muscle. Furthermore, we reveal these aforementioned phenomena occur, at least partially, through miR-155-mediated repression of important negative regulators (i.e. C/EBPß, HDAC4 and SOCS1) of insulin signaling. Taken together, these findings demonstrate, for the first time, that miR-155 is a positive regulator of insulin sensitivity with potential applications for diabetes treatment.


Assuntos
Diabetes Mellitus Tipo 2/genética , Hiperglicemia/genética , Resistência à Insulina/genética , Insulina/genética , MicroRNAs/genética , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Proliferação de Células/genética , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Regulação da Expressão Gênica , Glucose/metabolismo , Humanos , Hiperglicemia/sangue , Hiperglicemia/patologia , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Transgênicos , MicroRNAs/biossíntese , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Proteínas Proto-Oncogênicas c-akt/genética
4.
Am J Physiol Gastrointest Liver Physiol ; 315(4): G443-G453, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29792529

RESUMO

Liver regeneration after two-thirds partial hepatectomy (PH) is a clinically significant repair process for restoring proper liver architecture. Although microRNA-155 (miR-155) has been found to serve as a crucial microRNA regulator that controls liver cell function and proliferation, little is known about its specific role in the regenerating liver. Using a mouse model with miR-155 overexpression or miR-155 knockout, we investigated the molecular mechanisms of miR-155 in liver regeneration. We found a marked induction of miR-155 in C57BL/6 mice after PH. Furthermore, RL-m155 mice showed enhanced liver regeneration as a result of accelerated progression of hepatocytes into the cell cycle, mainly through an increase in cyclin levels. However, proliferation of hepatocytes was delayed in miR-155-deficient livers. Expression of suppressor of cytokine signaling 1 (SOCS1) was dramatically downregulated in the process of liver regeneration, and enhancement of SOCS1 contributed to impaired proliferation of hepatocytes. Additionally, in vitro and in vivo experiments showed that adenovirus- or adeno-associated virus-mediated overexpression of SOCS1 attenuated improved liver regeneration induced by miR-155 overexpression. Our study shows that miR-155 is a pro-proliferative regulator in liver regeneration by facilitating the cell cycle and directly targeting SOCS1. NEW & NOTEWORTHY Our findings suggest a microRNA-155 (miR-155)-mediated positive regulation pattern in liver regeneration. A series of in vivo and in vitro studies showed that miR-155 upregulation enhanced partial hepatectomy-induced proliferation of hepatocytes by promoting the cell cycle without inducing DNA damage or apoptosis. Suppressor of cytokine signaling 1, a target gene of miR-155, antagonized the proliferation-promoting effect of miR-155. Therefore, pharmacological intervention targeting miR-155 may be therapeutically beneficial in various liver diseases.


Assuntos
Proliferação de Células , Hepatócitos/metabolismo , Regeneração Hepática , MicroRNAs/genética , Proteína 1 Supressora da Sinalização de Citocina/genética , Animais , Células Cultivadas , Hepatócitos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/metabolismo
5.
J Transl Med ; 16(1): 141, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29793503

RESUMO

BACKGROUND: Hairless mice have been widely applied in skin-related researches, while hairless pigs will be an ideal model for skin-related study and other biomedical researches because of the similarity of skin structure with humans. The previous study revealed that hairlessness phenotype in nude mice is caused by insufficient expression of phospholipase C-delta 1 (PLCD1), an essential molecule downstream of Foxn1, which encouraged us to generate PLCD1-deficient pigs. In this study, we plan to firstly produce PLCD1 knockout (KO) mice by CRISPR/Cas9 technology, which will lay a solid foundation for the generation of hairless PLCD1 KO pigs. METHODS: Generation of PLCD1 sgRNAs and Cas 9 mRNA was performed as described (Shao in Nat Protoc 9:2493-2512, 2014). PLCD1-modified mice (F0) were generated via co-microinjection of PLCD1-sgRNA and Cas9 mRNA into the cytoplasm of C57BL/6J zygotes. Homozygous PLCD1-deficient mice (F1) were obtained by intercrossing of F0 mice with the similar mutation. RESULTS: PLCD1-modified mice (F0) showed progressive hair loss after birth and the genotype of CRISPR/Cas9-induced mutations in exon 2 of PLCD1 locus, suggesting the sgRNA is effective to cause mutations that lead to hair growth defect. Homozygous PLCD1-deficient mice (F1) displayed baldness in abdomen and hair sparse in dorsa. Histological abnormalities of the reduced number of hair follicles, irregularly arranged and curved hair follicles, epidermal hyperplasia and disturbed differentiation of epidermis were observed in the PLCD1-deficient mice. Moreover, the expression level of PLCD1 was significantly decreased, while the expression levels of other genes (i.e., Krt1, Krt5, Krt13, loricrin and involucrin) involved in the differentiation of hair follicle were remarkerably increased in skin tissues of PLCD1-deficient mice. CONCLUSIONS: In conclusion, we achieve PLCD1 KO mice by CRISPR/Cas9 technology, which provide a new animal model for hair development research, although homozygotes don't display completely hairless phenotype as expected.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Cabelo/patologia , Fosfolipase C delta/deficiência , Pele/patologia , Animais , Sequência de Bases , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfolipase C delta/metabolismo , RNA Guia de Cinetoplastídeos/genética
6.
Genome ; 59(10): 816-826, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27643679

RESUMO

The Cre/loxP system has become an important tool for the conditional gene knockout and conditional gene expression in genetically engineered mice. The applications of this system depend on transgenic reporter mouse lines that provide Cre recombinase activity with a defined cell type-, tissue-, or developmental stage-specificity. To develop a sensitive assay for monitoring Cre-mediated DNA excisions in mice, we generated Cre-mediated excision reporter mice, designated R/L mice (R/L: mRFP(monomeric red fluorescent protein)/luciferase), express mRFP throughout embryonic development and adult stages, while Cre-mediated excision deletes a loxP-flanked mRFP reporter gene and STOP sequence, thereby activating the expression of the second reporter gene luciferase, as assayed by in vivo and ex vivo bioluminescence imaging. After germ line deletion of the floxed mRFP and STOP sequence in R/L mice by EIIa-Cre mice, the resulting luciferase transgenic mice in which the loxP-mRFP-STOP-loxP cassette is excised from all cells express luciferase in all tissues and organs examined. The expression of luciferase transgene was activated in liver of RL/Alb-Cre double transgenic mice and in brain of RL/Nestin-Cre double transgenic mice when R/L reporter mice were mated with Alb-Cre mice and Nestin-Cre mice, respectively. Our findings reveal that the double reporter R/L mouse line is able to indicate the occurrence of Cre-mediated excision from early embryonic to adult lineages. Taken together, these findings demonstrate that the R/L mice serve as a sensitive reporter for Cre-mediated DNA excision both in living animals and in organs, tissues, and cells following necropsy.


Assuntos
Expressão Gênica , Técnicas de Inativação de Genes , Genes Reporter , Integrases/metabolismo , Luciferases/genética , Proteínas Luminescentes/genética , Animais , Feminino , Recombinação Homóloga , Fígado/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Fenótipo , Ativação Transcricional , Proteína Vermelha Fluorescente
7.
Lab Invest ; 95(9): 1056-70, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26098000

RESUMO

The miR-19 family (miR-19a and miR-19b-1) are key oncogenic components of the miR-17-92 cluster. Overexpression of miR-19 is strongly associated with cancer invasion and metastasis, and poor prognosis of cancer patients. However, the underlying mechanisms remain largely unknown. In the present study, we found that enforced expression of miR-19 including miR-19a and miR-19b-1 triggered epithelial-mesenchymal transition (EMT) of lung cancer cells A549 and HCC827 as shown by mesenchymal-like morphological conversion, downregulation of epithelial proteins (e.g., E-cadherin, ZO-1 (zona occludens 1), and α-catenin), upregulation of mesenchymal proteins (e.g., vimentin, fibronectin 1, N-cadherin, and snail1), formation of stress fibers, and reduced cell adhesion. In addition, enhanced migration and invasion were observed in the cancer cells A549 and HCC827 undergoing EMT. In contrast, silencing of endogenous miR-19 reversed EMT and reduced the migration and invasion abilities of A549 and HCC827 cells. DNA microarray results revealed significant changes of the expression of genes related to EMT, migration, and metastasis of miR-19-expressing A549 cells. Moreover, siRNA-mediated knockdown of PTEN, a target of miR-19, also resulted in EMT, migration, and invasion of A549 and HCC827 cells, suggesting that PTEN is involved in miR-19-induced EMT, migration and invasion of lung cancer cells. Furthermore, lung cancer cells undergoing EMT induced by miR-19 demonstrated reduced proliferation in vitro and in vivo, and enhanced resistance to apoptosis caused by TNF-α. Taken together, these findings suggest that miR-19 triggers EMT, which has an important role in the invasion and migration of lung cancer cells, accompanied by the reduced proliferation of cells.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias Pulmonares/fisiopatologia , MicroRNAs/metabolismo , Animais , Antígenos CD/metabolismo , Western Blotting , Caderinas/metabolismo , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibronectinas/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Luciferases , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Interferência de RNA , Fatores de Transcrição da Família Snail , Sais de Tetrazólio , Tiazóis , Fatores de Transcrição/metabolismo , Ensaio Tumoral de Célula-Tronco , Vimentina/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , alfa Catenina/metabolismo
8.
Biotechnol Lett ; 36(1): 9-20, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24068500

RESUMO

miR-21 is highly expressed in a variety of cancers, suggesting that it might play a role in the process of oncogenesis, as supported by it directly causing pre-B cell lymphomas in transgenic mice. Rm21LG transgenic mice for the conditional co-expression of miR-21 and luciferase (Luc) mediated by Cre/lox P system were generated. The homozygous Rm21LG transgenic mice were visually and readily characterized immediately after birth by whole-body fluorescence imaging. More importantly, miR-21 and Luc were successfully activated in the liver of Rm21LG/Alb-Cre double-transgenic mice, demonstrating that Rm21LG conditional transgenic system could work in a Cre-dependent manner. The combined use of this conditional miR-21 transgenic mouse line, various cell/tissue-specific Cre mouse lines and bioluminescence imaging will be a valuable tool in vivo to uncover the functions of miR-21 as oncomiR in initiating tumors.


Assuntos
Pesquisa Biomédica/instrumentação , Carcinogênese/genética , MicroRNAs/genética , Animais , Regulação Neoplásica da Expressão Gênica , Integrases/genética , Luciferases/química , Luciferases/genética , Luciferases/metabolismo , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Transgênicos , MicroRNAs/química , MicroRNAs/metabolismo , Especificidade de Órgãos/genética , Proteína Vermelha Fluorescente
9.
Aging (Albany NY) ; 16(8): 7217-7248, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38656880

RESUMO

AIM: In 2019, to examine the functions of METTL3 in liver and underlying mechanisms, we generated mice with hepatocyte-specific METTL3 homozygous knockout (METTL3Δhep) by simultaneously crossing METTL3fl/fl mice with Alb-iCre mice (GPT) or Alb-Cre mice (JAX), respectively. In this study, we explored the potential reasons why hepatocyte-specific METTL3 homozygous disruption by Alb-iCre mice (GPT), but not by Alb-Cre mice (JAX), resulted in acute liver failure (ALF) and then postnatal lethality. MAIN METHODS: Mice with hepatocyte-specific METTL3 knockout were generated by simultaneously crossing METTL3fl/fl mice with Alb-iCre mice (GPT; Strain No. T003814) purchased from the GemPharmatech Co., Ltd., (Nanjing, China) or with Alb-Cre mice (JAX; Strain No. 003574) obtained from The Jackson Laboratory, followed by combined-phenotype analysis. The publicly available RNA-sequencing data deposited in the NCBI Gene Expression Omnibus (GEO) database under the accession No.: GSE198512 (postnatal lethality), GSE197800 (postnatal survival) and GSE176113 (postnatal survival) were mined to explore the potential reasons why hepatocyte-specific METTL3 homozygous deletion by Alb-iCre mice (GPT), but not by Alb-Cre mice (JAX), leads to ALF and then postnatal lethality. KEY FINDINGS: Firstly, we observed that hepatocyte-specific METTL3 homozygous deficiency by Alb-iCre mice (GPT) or by Alb-Cre mice (JAX) caused liver injury, abnormal lipid accumulation and apoptosis. Secondly, we are surprised to find that hepatocyte-specific METTL3 homozygous deletion by Alb-iCre mice (GPT), but not by Alb-Cre mice (JAX), led to ALF and then postnatal lethality. Our findings clearly demonstrated that METTL3Δhep mice (GPT), which are about to die, exhibited the severe destruction of liver histological structure, suggesting that METTL3Δhep mice (GPT) nearly lose normal liver function, which subsequently contributes to ALF, followed by postnatal lethality. Finally, we unexpectedly found that as the compensatory growth responses of hepatocytes to liver injury induced by METTL3Δhep (GPT), the proliferation of METTL3Δhep hepatocytes (GPT), unlike METTL3Δhep hepatocytes (JAX), was not evidenced by the significant increase of Ki67-positive hepatocytes, not accompanied by upregulation of cell-cycle-related genes. Moreover, GO analysis revealed that upregulated genes in METTL3Δhep livers (GPT), unlike METTL3Δhep livers (JAX), are not functionally enriched in terms associated with cell cycle, cell division, mitosis, microtubule cytoskeleton organization, spindle organization, chromatin segregation and organization, and nuclear division, consistent with the loss of compensatory proliferation of METTL3Δhep hepatocytes (GPT) observed in vivo. Thus, obviously, the loss of the compensatory growth capacity of METTL3Δhep hepatocytes (GPT) in response to liver injury might contribute to, at least partially, ALF and subsequently postnatal lethality of METTL3Δhep mice (GPT). SIGNIFICANCE: These findings from this study and other labs provide strong evidence that these phenotypes (i.e., ALF and postnatal lethality) of METTL3Δhep mice (GPT) might be not the real functions of METTL3, and closely related with Alb-iCre mice (GPT), suggesting that we should remind researchers to use Alb-iCre mice (GPT) with caution to knockout gene in hepatocytes in vivo.


Assuntos
Hepatócitos , Falência Hepática Aguda , Metiltransferases , Animais , Camundongos , Hepatócitos/metabolismo , Hepatócitos/patologia , Fígado/patologia , Fígado/metabolismo , Falência Hepática Aguda/genética , Falência Hepática Aguda/patologia , Falência Hepática Aguda/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos Knockout
10.
J Exp Clin Cancer Res ; 43(1): 62, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38419081

RESUMO

BACKGROUND: In recent years, the development of adjunctive therapeutic hyperthermia for cancer therapy has received considerable attention. However, the mechanisms underlying hyperthermia resistance are still poorly understood. In this study, we investigated the roles of cold­inducible RNA binding protein (Cirbp) in regulating hyperthermia resistance and underlying mechanisms in nasopharyngeal carcinoma (NPC). METHODS: CCK-8 assay, colony formation assay, tumor sphere formation assay, qRT-PCR, Western blot were employed to examine the effects of hyperthermia (HT), HT + oridonin(Ori) or HT + radiotherapy (RT) on the proliferation and stemness of NPC cells. RNA sequencing was applied to gain differentially expressed genes upon hyperthermia. Gain-of-function and loss-of-function experiments were used to evaluate the effects of RNAi-mediated Cirbp silencing or Cirbp overexpression on the sensitivity or resistance of NPC cells and cancer stem-like cells to hyperthermia by CCK-8 assay, colony formation assay, tumorsphere formation assay and apoptosis assay, and in subcutaneous xenograft animal model. miRNA transient transfection and luciferase reporter assay were used to demonstrate that Cirbp is a direct target of miR-377-3p. The phosphorylation levels of key members in ATM-Chk2 and ATR-Chk1 pathways were detected by Western blot. RESULTS: Our results firstly revealed that hyperthermia significantly attenuated the stemness of NPC cells, while combination treatment of hyperthermia and oridonin dramatically increased the killing effect on NPC cells and cancer stem cell (CSC)­like population. Moreover, hyperthermia substantially improved the sensitivity of radiation­resistant NPC cells and CSC­like cells to radiotherapy. Hyperthermia noticeably suppressed Cirbp expression in NPC cells and xenograft tumor tissues. Furthermore, Cirbp inhibition remarkably boosted anti­tumor­killing activity of hyperthermia against NPC cells and CSC­like cells, whereas ectopic expression of Cirbp compromised tumor­killing effect of hyperthermia on these cells, indicating that Cirbp overexpression induces hyperthermia resistance. ThermomiR-377-3p improved the sensitivity of NPC cells and CSC­like cells to hyperthermia in vitro by directly suppressing Cirbp expression. More importantly, our results displayed the significantly boosted sensitization of tumor xenografts to hyperthermia by Cirbp silencing in vivo, but ectopic expression of Cirbp almost completely counteracted hyperthermia-mediated tumor cell-killing effect against tumor xenografts in vivo. Mechanistically, Cirbp silencing-induced inhibition of DNA damage repair by inactivating ATM-Chk2 and ATR-Chk1 pathways, decrease in stemness and increase in cell death contributed to hyperthermic sensitization; conversely, Cirbp overexpression-induced promotion of DNA damage repair, increase in stemness and decrease in cell apoptosis contributed to hyperthermia resistance. CONCLUSION: Taken together, these findings reveal a previously unrecognized role for Cirbp in positively regulating hyperthermia resistance and suggest that thermomiR-377-3p and its target gene Cirbp represent promising targets for therapeutic hyperthermia.


Assuntos
Diterpenos do Tipo Caurano , Hipertermia Induzida , MicroRNAs , Neoplasias Nasofaríngeas , Animais , Humanos , Neoplasias Nasofaríngeas/patologia , Sincalida/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/terapia , Carcinoma Nasofaríngeo/patologia , MicroRNAs/genética , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
11.
Aging (Albany NY) ; 15(12): 5550-5568, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37335109

RESUMO

AIMS: N6-methyladenosine (m6A), the most abundant and conserved epigenetic modification of mRNA, participates in various physiological and pathological processes. However, the roles of m6A modification in liver lipid metabolism have yet to be understood entirely. We aimed to investigate the roles of the m6A "writer" protein methyltransferase-like 3 (Mettl3) in liver lipid metabolism and the underlying mechanisms. MAIN METHODS: We assessed the expression of Mettl3 in liver tissues of diabetes (db/db) mice, obese (ob/ob) mice, high saturated fat-, cholesterol-, and fructose-induced non-alcoholic fatty liver disease (NAFLD) mice, and alcohol abuse and alcoholism (NIAAA) mice by quantitative reverse-transcriptase PCR (qRT-PCR). Hepatocyte-specific Mettl3 knockout mice were used to evaluate the effects of Mettl3 deficiency in mouse liver. The molecular mechanisms underlying the roles of Mettl3 deletion in liver lipid metabolism were explored by multi-omics joint analysis of public data from the Gene Expression Omnibus database and further validated by qRT-PCR and Western blot. KEY FINDINGS: Significantly decreased Mettl3 expression was associated with NAFLD progression. Hepatocyte-specific knockout of Mettl3 resulted in significant lipid accumulation in the liver, increased serum total cholesterol levels, and progressive liver damage in mice. Mechanistically, loss of Mettl3 significantly downregulated the expression levels of multiple m6A-modified mRNAs related to lipid metabolism, including Adh7, Cpt1a, and Cyp7a1, further promoting lipid metabolism disorders and liver injury in mice. SIGNIFICANCE: In summary, our findings demonstrate that the expression alteration of genes related to lipid metabolism by Mettl3-mediated m6A modification contributes to the development of NAFLD.


Assuntos
Transtornos do Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Metiltransferases/genética , Metiltransferases/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Metabolismo dos Lipídeos/genética , Expressão Gênica
12.
Aging (Albany NY) ; 15(10): 4391-4410, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37219449

RESUMO

B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1) is overexpressed in various cancer types. We found that Bmi-1 mRNA levels were elevated in nasopharyngeal carcinoma (NPC) cell lines. In immunohistochemical analyses, high Bmi-1 levels were observed in not only 5 of 38 non-cancerous nasopharyngeal squamous epithelial biopsies, but also in 66 of 98 NPC specimens (67.3%). High Bmi-1 levels were detected more frequently in T3-T4, N2-N3 and stage III-IV NPC biopsies than in T1-T2, N0-N1 and stage I-II NPC samples, indicating that Bmi-1 is upregulated in advanced NPC. In 5-8F and SUNE1 NPC cells, stable depletion of Bmi-1 using lentiviral RNA interference greatly suppressed cell proliferation, induced G1-phase cell cycle arrest, reduced cell stemness and suppressed cell migration and invasion. Likewise, knocking down Bmi-1 inhibited NPC cell growth in nude mice. Both chromatin immunoprecipitation and Western blotting assays demonstrated that Hairy gene homolog (HRY) upregulated Bmi-1 by binding to its promoter, thereby increasing the stemness of NPC cells. Immunohistochemistry and quantitative real-time PCR analyses revealed that HRY expression correlated positively with Bmi-1 expression in a cohort of NPC biopsies. These findings suggested that HRY promotes NPC cell stemness by upregulating Bmi-1, and that silencing Bmi-1 can suppress NPC progression.


Assuntos
Neoplasias Nasofaríngeas , Animais , Camundongos , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/patologia , Camundongos Nus , Linhagem Celular Tumoral , Nasofaringe/patologia , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética
13.
Nat Commun ; 13(1): 5845, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195598

RESUMO

Autophagy is crucial for maintaining cellular energy homeostasis and for cells to adapt to nutrient deficiency, and nutrient sensors regulating autophagy have been reported previously. However, the role of eiptranscriptomic modifications such as m6A in the regulation of starvation-induced autophagy is unclear. Here, we show that the m6A reader YTHDF3 is essential for autophagy induction. m6A modification is up-regulated to promote autophagosome formation and lysosomal degradation upon nutrient deficiency. METTL3 depletion leads to a loss of functional m6A modification and inhibits YTHDF3-mediated autophagy flux. YTHDF3 promotes autophagy by recognizing m6A modification sites around the stop codon of FOXO3 mRNA. YTHDF3 also recruits eIF3a and eIF4B to facilitate FOXO3 translation, subsequently initiating autophagy. Overall, our study demonstrates that the epitranscriptome regulator YTHDF3 functions as a nutrient responder, providing a glimpse into the post-transcriptional RNA modifications that regulate metabolic homeostasis.


Assuntos
Autofagia , Autofagia/genética , Códon de Terminação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ativação Transcricional , Regulação para Cima
14.
Aging (Albany NY) ; 14(10): 4445-4458, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35575836

RESUMO

To master the technology of reprogramming mouse somatic cells to induced pluripotent stem cells (iPSCs), which will lay a good foundation for setting up a technology platform on reprogramming human cancer cells into iPSCs. Mouse iPSCs (i.e., Oct4-GFP miPSCs) was successfully generated from mouse embryonic fibroblasts (MEFs) harboring Oct4-EGFP transgene by introducing four factors, Oct4, Sox2, c-Myc and Klf4, under mESC (Murine embryonic stem cells) culture conditions. Oct4-GFP miPSCs were similar to mESCs in morphology, proliferation, mESC-specific surface antigens and gene expression. Additionally, Oct4-GFP miPSCs could be cultured in suspension to form embryoid bodies (EBs) and differentiate into cell types of the three germ layers in vitro. Moreover, Oct4-GFP miPSCs could develop to teratoma and chimera in vivo. Unlike cell cycle distribution of MEFs, Oct4-GFP miPSCs are similar to mESCs in the cell cycle structure which consists of higher S phase and lower G1 phase. More importantly, our data demonstrated that MEFs harboring Oct4-EGFP transgene did not express GFP, until they were reprogrammed to the pluripotent stage (iPSCs), while the GFP expression was progressively lost when these pluripotent Oct4-GFP miPSCs exposed to EB-mediated differentiation conditions, suggesting the pluripotency of Oct4-GFP miPSCs can be real-time monitored over long periods of time via GFP assay. Altogether, our findings demonstrate that Oct4-GFP miPSC line is successfully established, which will lay a solid foundation for setting up a technology platform on reprogramming cancer cells into iPSCs. Furthermore, this pluripotency reporter system permits the long-term real-time monitoring of pluripotency changes in a live single-cell, and its progeny.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Diferenciação Celular , Células Cultivadas , Reprogramação Celular/genética , Células-Tronco Embrionárias , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos
15.
Aging (Albany NY) ; 13(17): 21497-21512, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34491904

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a highly malignant gastrointestinal cancer with a high recurrence rate and poor prognosis. Although N6-methyladenosine (m6A), the most abundant epitranscriptomic modification of mRNAs, has been implicated in several cancers, little is known about its participation in ESCC progression. We found reduced expression of ALKBH5, an m6A demethylase, in ESCC tissue specimens with a more pronounced effect in T3-T4, N1-N3, clinical stages III-IV, and histological grade III tumors, suggesting its involvement in advanced stages of ESCC. Exogenous expression of ALKBH5 inhibited the in vitro proliferation of ESCC cells, whereas depletion of endogenous ALKBH5 markedly enhanced ESCC cell proliferation in vitro. This suggests ALKBH5 exerts anti-proliferative effects on ESCC growth. Furthermore, ALKBH5 overexpression suppressed tumor growth of Eca-109 cells in nude mice; conversely, depletion of endogenous ALKBH5 accelerated tumor growth of TE-13 cells in vivo. The growth-inhibitory effects of ALKBH5 overexpression are partly attributed to a G1-phase arrest. In addition, ALKBH5 overexpression reduced the in vitro migration and invasion of ESCC cells. Altogether, our findings demonstrate that the loss of ALKBH5 expression contributes to ESCC malignancy.


Assuntos
Adenosina/análogos & derivados , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Regulação Neoplásica da Expressão Gênica , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Adenosina/metabolismo , Adulto , Idoso , Animais , Carcinogênese , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Esôfago/metabolismo , Esôfago/patologia , Feminino , Humanos , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Cancer ; 12(15): 4463-4477, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149910

RESUMO

Background: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and has a poor prognosis due to the high incidence of invasion and metastasis-related progression. However, the underlying mechanism remains elusive, and valuable biomarkers for predicting invasion, metastasis, and poor prognosis of HCC patients are still lacking. Methods: Immunohistochemistry (IHC) was performed on HCC tissues (n = 325), and the correlations between MST4 expression of the clinical HCC tissues, the clinicopathologic features, and survival were further evaluated. The effects of MST4 on HCC cell migratory and invasive properties in vitro were evaluated by Transwell and Boyden assays. The intrahepatic metastasis mouse model was established to evaluate the HCC metastasis in vivo. The PI3K inhibitor, LY294002, and a specific siRNA against Snail1 were used to investigate the roles of PI3K/AKT pathway and Snail1 in MST4-regulated EMT, migration, and invasion of HCC cells, respectively. Results: In this study, by comprehensively analyzing our clinical data, we discovered that low MST4 expression is highly associated with the advanced progression of HCC and serves as a prognostic biomarker for HCC patients of clinical-stage III-IV. Functional studies indicate that MST4 inactivation induces epithelial-to-mesenchymal transition (EMT) of HCC cells, promotes their migratory and invasive potential in vitro, and facilitates their intrahepatic metastasis in vivo, whereas MST4 overexpression exhibits the opposite phenotypes. Mechanistically, MST4 inactivation elevates the expression and nuclear translocation of Snail1, a key EMT transcription factor (EMT-TF), through the PI3K/AKT signaling pathway, thus inducing the EMT phenotype of HCC cells, and enhancing their invasive and metastatic potential. Moreover, a negative correlation between MST4 and p-AKT, Snail1, and Ki67 and a positive correlation between MST4 and E-cadherin were determined in clinical HCC samples. Conclusions: Our findings indicate that MST4 suppresses EMT, invasion, and metastasis of HCC cells by modulating the PI3K/AKT/Snail1 axis, suggesting that MST4 may be a potential prognostic biomarker for aggressive and metastatic HCC.

17.
Cell Death Dis ; 12(4): 408, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859186

RESUMO

One of the malignant transformation hallmarks is metabolism reprogramming, which plays a critical role in the biosynthetic needs of unchecked proliferation, abrogating cell death programs, and immunologic escape. However, the mechanism of the metabolic switch is not fully understood. Here, we found that the S-nitrosoproteomic profile of endogenous nitrogen oxide in ovarian cancer cells targeted multiple components in metabolism processes. Phosphofructokinase (PFKM), one of the most important regulatory enzymes of glycolysis, was S-nitrosylated by nitric oxide synthase NOS1 at Cys351. S-nitrosylation at Cys351 stabilized the tetramer of PFKM, leading to resist negative feedback of downstream metabolic intermediates. The PFKM-C351S mutation decreased the proliferation rate of cultured cancer cells, and reduced tumor growth and metastasis in the mouse xenograft model. These findings indicated that S-nitrosylation at Cys351 of PFKM by NOS1 contributes to the metabolic reprogramming of ovarian cancer cells, highlighting a critical role of endogenous nitrogen oxide on metabolism regulations in tumor progression.


Assuntos
Carcinoma Epitelial do Ovário/genética , Glicólise/genética , Fosfofrutoquinase-1 Muscular/metabolismo , Animais , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Camundongos
18.
Aging (Albany NY) ; 13(17): 21155-21190, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34517344

RESUMO

In this study, we investigated the role of embryonic gene Cripto-1 (CR-1) in hepatocellular carcinoma (HCC) using hepatocyte-specific CR-1-overexpressing transgenic mice. The expression of truncated 1.7-kb CR-1 transcript (SF-CR-1) was significantly higher than the full-length 2.0-kb CR-1 transcript (FL-CR-1) in a majority of HCC tissues and cell lines. Moreover, CR-1 mRNA and protein levels were significantly higher in HCC tissues than adjacent normal liver tissues. Hepatocyte-specific over-expression of CR-1 in transgenic mice enhanced hepatocyte proliferation after 2/3 partial hepatectomy (2/3 PHx). CR-1 over-expression significantly increased in vivo xenograft tumor growth of HCC cells in nude mice and in vitro HCC cell proliferation, migration, and invasion. CR-1 over-expression in the transgenic mouse livers deregulated HCC-related signaling pathways such as AKT, Wnt/ß-catenin, Stat3, MAPK/ERK, JNK, TGF-ß and Notch, as well as expression of HCC-related genes such as CD5L, S100A8, S100A9, Timd4, Orm2, Orm3, PDK4, DMBT1, G0S2, Plk2, Plk3, Gsta1 and Gsta2. However, histological signs of precancerous lesions, hepatocyte dysplasia or HCC formation were not observed in the livers of 3-, 6- or 8-month-old hepatocyte-specific CR-1-overexpressing transgenic mice. These findings demonstrate that liver-specific CR-1 overexpression in transgenic mice deregulates signaling pathways and genes associated with HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Proteínas Ligadas por GPI/metabolismo , Hepatócitos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fígado/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Carcinogênese , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Proliferação de Células , Fator de Crescimento Epidérmico/genética , Proteínas Ligadas por GPI/genética , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Neoplasias Hepáticas , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Nus , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Neoplasias Experimentais , Especificidade de Órgãos , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/metabolismo , Transdução de Sinais , Regulação para Cima
19.
Transplantation ; 104(10): 2059-2064, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32453253

RESUMO

BACKGROUND: Islet transplantation is a promising treatment in patients with complicated diabetes. The ideal transplant site that can extend islet graft survival and reduce the required number of engrafted islets remains to be established. METHODS: Donor islets were isolated from red fluorescent protein (RFP) mice and transplanted into interscapular brown adipose tissue (BAT) or unilateral inguinal white adipose tissue of age-matched diabetic RFP mice. Blood glucose and body weight of the mice were monitored, and vitality and function of ectopic RFP islets were detected by fluorescence imaging, histological examination, and intraperitoneal glucose tolerance test (GTT). RESULTS: BAT enabled the marginal number of grafted islets (80 islets) to restore blood glucose, insulin level, and GTT to normal values in all diabetic recipient mice in the short term after graft, and maintained these values for 1 year at the end of the experiment. Importantly, in the short term after transplantation, abundant extra- and intraislet neovasculatures were observed in BAT, but not in white adipose tissue, which allowed the ectopic islets to retain typical architecture and morphology and contributed to the normal GTT. Moreover, the islet-engrafted BAT displayed normal structure and morphology without significant immunocyte infiltration, and the recipient mice also showed normal lipid levels in the blood. CONCLUSIONS: BAT remarkably enhances the viability and biological function of the transplanted ectopic islets. Moreover, the anatomical location of BAT lends itself to biopsy, removal, and islet retransplantation, which strongly suggests the BAT as a potential desirable site for islet transplantation in basic and clinical research.


Assuntos
Tecido Adiposo Marrom/cirurgia , Sobrevivência de Enxerto , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas/cirurgia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/cirurgia , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Genes Reporter , Insulina/sangue , Ilhotas Pancreáticas/metabolismo , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neovascularização Fisiológica , Fatores de Tempo , gama-Glutamiltransferase/sangue , Proteína Vermelha Fluorescente
20.
J Cancer ; 11(17): 5106-5117, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32742458

RESUMO

Objective: MST4 has exhibited functions in regulating cell polarity, Golgi apparatus, cell migration, and cancer. Mechanistically, it affects the activity of p-ERK, Hippo-YAP pathway and autophagy. The aim of this study is to further examine the functions of MST4 in hepatocellular carcinoma (HCC) and the underlying mechanism. Methods: The expression level of MST4 in HCC and noncancer adjacent liver tissues was determined by qRT-PCR and immunohistochemistry staining. Wild-type MST4 (MST4) and a dominant-negative mutant of MST4 (dnMST4) were overexpressed in HCC cell lines, respectively. CCK-8 assay, EdU incorporation assay, and soft agar assay were used to determine cell proliferation in vitro. The xenograft mouse model was employed to determine HCC cell growth in vivo. Cell cycle analysis was performed by PI staining and flow cytometry. The expression of key members in PI3K/AKT pathway was detected by Western blot analysis. Results: In our study, we reported new evidence that MST4 was frequently down-regulated in HCC tissues. Gain-of-function and loss-of-function experiments demonstrated that MST4 negatively regulated in vitro HCC cell proliferation. Additionally, MST4 overexpression suppressed Bel-7404 cell tumor growth in nude mice. Further experiments revealed that the growth-inhibitory effect of MST4 overexpression was partly due to a G1-phase cell cycle arrest. Importantly, mechanistic investigations suggested that dnMST4 significantly elevated the phosphorylation levels of key members of PI3K/AKT pathway, and the selective PI3K inhibitor LY294002 can reverse the proliferation-promoting effect of dnMST4. Conclusions: Overall, our results provide a new insight into the clinical significance, functions and molecular mechanism of MST4 in HCC, suggesting that MST4 might have a potential therapeutic value in the HCC clinical treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA