Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.362
Filtrar
1.
Immunity ; 54(8): 1825-1840.e7, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34270940

RESUMO

Hepatocellular carcinoma (HCC) often develops following chronic hepatitis B virus (HBV) infection and responds poorly to immune checkpoint blockade. Here, we examined the antigen specificities of HCC-infiltrating T cells and their relevance to tumor control. Using highly multiplexed peptide-MHC tetramer staining of unexpanded cells from blood, liver, and tumor tissues from 46 HCC patients, we detected 91 different antigen-specific CD8+ T cell populations targeting HBV, neoantigen, tumor-associated, and disease-unrelated antigens. Parallel high-dimensional analysis delineated five distinct antigen-specific tissue-resident memory T (Trm) cell populations. Intratumoral and intrahepatic HBV-specific T cells were enriched for two Trm cell subsets that were PD-1loTOXlo, despite being clonally expanded. High frequencies of intratumoral terminally exhausted T cells were uncommon. Patients with tumor-infiltrating HBV-specific CD8+ Trm cells exhibited longer-term relapse-free survival. Thus, non-terminally exhausted HBV-specific CD8+ Trm cells show hallmarks of active involvement and effective antitumor response, implying that these cells could be harnessed for therapeutic purposes.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Carcinoma Hepatocelular/imunologia , Memória Imunológica/imunologia , Neoplasias Hepáticas/imunologia , Linfócitos do Interstício Tumoral/imunologia , Antígenos de Neoplasias/imunologia , Carcinoma Hepatocelular/patologia , Vírus da Hepatite B/imunologia , Hepatite B Crônica/imunologia , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/prevenção & controle , Receptor de Morte Celular Programada 1/metabolismo , Células Tumorais Cultivadas
2.
Proc Natl Acad Sci U S A ; 121(10): e2319366121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422020

RESUMO

Acute myeloid leukemia (AML) is an aging-related and heterogeneous hematopoietic malignancy. In this study, a total of 1,474 newly diagnosed AML patients with RNA sequencing data were enrolled, and targeted or whole exome sequencing data were obtained in 94% cases. The correlation of aging-related factors including age and clonal hematopoiesis (CH), gender, and genomic/transcriptomic profiles (gene fusions, genetic mutations, and gene expression networks or pathways) was systematically analyzed. Overall, AML patients aged 60 y and older showed an apparently dismal prognosis. Alongside age, the frequency of gene fusions defined in the World Health Organization classification decreased, while the positive rate of gene mutations, especially CH-related ones, increased. Additionally, the number of genetic mutations was higher in gene fusion-negative (GF-) patients than those with GF. Based on the status of CH- and myelodysplastic syndromes (MDS)-related mutations, three mutant subgroups were identified among the GF- AML cohort, namely, CH-AML, CH-MDS-AML, and other GF- AML. Notably, CH-MDS-AML demonstrated a predominance of elderly and male cases, cytopenia, and significantly adverse clinical outcomes. Besides, gene expression networks including HOXA/B, platelet factors, and inflammatory responses were most striking features associated with aging and poor prognosis in AML. Our work has thus unraveled the intricate regulatory circuitry of interactions among different age, gender, and molecular groups of AML.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Idoso , Humanos , Masculino , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Envelhecimento/genética , Mutação , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Prognóstico
3.
Plant J ; 118(3): 717-730, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38213282

RESUMO

Cryptotaenia japonica, a traditional medicinal and edible vegetable crops, is well-known for its attractive flavors and health care functions. As a member of the Apiaceae family, the evolutionary trajectory and biological properties of C. japonica are not clearly understood. Here, we first reported a high-quality genome of C. japonica with a total length of 427 Mb and N50 length 50.76 Mb, was anchored into 10 chromosomes, which confirmed by chromosome (cytogenetic) analysis. Comparative genomic analysis revealed C. japonica exhibited low genetic redundancy, contained a higher percentage of single-cope gene families. The homoeologous blocks, Ks, and collinearity were analyzed among Apiaceae species contributed to the evidence that C. japonica lacked recent species-specific WGD. Through comparative genomic and transcriptomic analyses of Apiaceae species, we revealed the genetic basis of the production of anthocyanins. Several structural genes encoding enzymes and transcription factor genes of the anthocyanin biosynthesis pathway in different species were also identified. The CjANSa, CjDFRb, and CjF3H gene might be the target of Cjaponica_2.2062 (bHLH) and Cjaponica_1.3743 (MYB). Our findings provided a high-quality reference genome of C. japonica and offered new insights into Apiaceae evolution and biology.


Assuntos
Antocianinas , Apiaceae , Genoma de Planta , Genômica , Antocianinas/biossíntese , Antocianinas/genética , Antocianinas/metabolismo , Genoma de Planta/genética , Apiaceae/genética , Apiaceae/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromossomos de Plantas/genética
4.
Plant Physiol ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753299

RESUMO

The transcriptional regulation of aluminum (Al) tolerance in plants is largely unknown, although Al toxicity restricts agricultural yields in acidic soils.. Here, we identified a NAM, ATAF1/2, and cup-shaped cotyledon 2 (NAC) transcription factor that participates in Al tolerance in Arabidopsis (Arabidopsis thaliana). Al substantially induced the transcript and protein levels of ANAC070, and loss-of-function anan070 mutants showed remarkably increased Al sensitivity, implying a beneficial role of ANAC070 in plant tolerance to Al toxicity. Further investigation revealed that more Al accumulated in the roots of anac070 mutants, especially in root cell walls, accompanied by a higher hemicellulose and xyloglucan level, implying a possible interaction between ANAC070 and genes that encode proteins responsible for the modification of xyloglucan, including xyloglucan endo-transglycosylases/hydrolase (XTH) or ANAC017. Yeast one hybrid analysis revealed a potential interaction between ANAC070 and ANAC017, but not for other XTHs. Furthermore, dual-luciferase reporter assay, RT-qPCR, and GUS analysis revealed that ANAC070 could directly repress the transcript levels of ANAC017, and knockout of ANAC017 in the anac070 mutant partially restored its Al sensitivity phenotype, indicating that ANAC070 contributes to Al tolerance mechanisms other than suppression of ANAC017 expression. Further analysis revealed that the core transcription factor SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1) and its target genes, which control Al tolerance in Arabidopsis, may also be involved in ANAC070-regulated Al tolerance. In summary, we identified a transcription factor, ANAC070, that represses the ANAC017-XTH31 module to regulate Al tolerance in Arabidopsis.

5.
Acc Chem Res ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319810

RESUMO

ConspectusLithium-sulfur (Li-S) batteries have attracted worldwide attention as promising next-generation rechargeable batteries due to their high theoretical energy density of 2600 Wh kg-1. The actual energy density of Li-S batteries at the pouch cell level has significantly exceeded that of state-of-the-art Li-ion batteries. However, the overall performances of Li-S batteries under practical working conditions are limited by the sluggish conversion kinetics of the sulfur cathodes. To overcome the above challenge, various kinetic promotion strategies have been proposed to accelerate the multiphase and multi-electron cathodic redox reactions between sulfur, lithium polysulfides (LiPSs), and lithium sulfide. Nowadays, kinetic promoters have been massively employed in sulfur cathodes to achieve Li-S batteries with high energy densities, high rates, and long lifespans. A comprehensive and timely summary of cutting-edge kinetic promoters for sulfur cathodes is of great essence to afford an in-depth understanding of the unique Li-S electrochemistry.In this Account, we outline the recent efforts on the design of sulfur cathode kinetic promoters for advanced Li-S batteries. The latest progress is discussed in detail regarding heterogeneous, homogeneous, and semi-immobilized kinetic promoters. Heterogeneous promoters, representatively known as electrocatalysts, function mainly by reducing the energy barriers of the interfacial electrochemical reactions. The working mechanism, activity regulation strategies, and reconstitution/deactivation processes of the heterogeneous promoters are reviewed to provide guiding principles for rational design. In comparison, homogeneous promoters are able to fully contact with the reaction interfaces and regulate the electron/ion-inaccessible reactants in working Li-S batteries. Redox mediators and redox comediators are typical homogeneous promoters. The former establishes extra chemical reaction pathways to circumvent the originally sluggish steps and boost the overall kinetics, while the latter fundamentally modifies the LiPS molecules to enhance their redox kinetics. For semi-immobilized promoters, the active units are generally anchored on the cathode substrate through flexible chains with mobile characteristics. Such a design endows the promoter with both heterogeneous and homogeneous characteristics to comprehensively regulate the multiphase sulfur redox reactions involving both mobile and immobile reactants.Overall, this Account summarizes the fundamental electrochemistry, design principles, and practical promotion effects of the various kinetic promoters used for the sulfur cathodes in Li-S batteries. We believe that this Account will provide an in-depth and cutting-edge understanding of the unique sulfur electrochemistry, thereby providing guidance for further development of high-performance Li-S batteries and analogous rechargeable battery systems.

6.
FASEB J ; 38(1): e23357, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38085169

RESUMO

Bacterial infection is the main cause of pulpitis. However, whether a dominant bacteria can promote the progression of pulpitis and its underlying mechanism remains unclear. We provided a comprehensive assessment of the microbiota alteration in pulpitis using 16S rRNA sequencing. Fusobacterium nucleatum was the most enriched in pulpitis and played a pathogenic role accelerating pulpitis progression in rat pulpitis model. After odontoblast-like cells cocultured with F. nucleatum, the stimulator of interferon genes (STING) pathway and autophagy were activation. There was a float of STING expression during F. nucleatum stimulation. STING was degraded by autophagy at the early stage. At the late stage, F. nucleatum stimulated mitochondrial Reactive Oxygen Species (ROS) production, mitochondrial dysfunction and then mtDNA escape into cytosol. mtDNA, which escaped into cytosol, caused more cytosolic mtDNA binds to cyclic GMP-AMP synthase (cGAS). The release of IFN-ß was dramatically reduced when mtDNA-cGAS-STING pathway inhibited. STING-/- mice showed milder periapical bone loss and lower serum IFN-ß levels compared with wildtype mice after 28 days F. nucleatum-infected pulpitis model establishment. Our data demonstrated that F. nucleatum exacerbated the progression of pulpitis, which was mediated by the STING-dependent pathway.


Assuntos
Fusobacterium nucleatum , Pulpite , Camundongos , Ratos , Animais , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/metabolismo , Transdução de Sinais , RNA Ribossômico 16S , Nucleotidiltransferases/metabolismo , DNA Mitocondrial/genética
7.
Nature ; 627(8002): 42-43, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418722
8.
Nature ; 567(7748): 409-413, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30867599

RESUMO

Chromatin remodellers include diverse enzymes with distinct biological functions, but nucleosome-sliding activity appears to be a common theme1,2. Among the remodelling enzymes, Snf2 serves as the prototype to study the action of this protein family. Snf2 and related enzymes share two conserved RecA-like lobes3, which by themselves are able to couple ATP hydrolysis to chromatin remodelling. The mechanism by which these enzymes couple ATP hydrolysis to translocate the nucleosome along the DNA remains unclear2,4-8. Here we report the structures of Saccharomyces cerevisiae Snf2 bound to the nucleosome in the presence of ADP and ADP-BeFx. Snf2 in the ADP-bound state adopts an open conformation similar to that in the apo state, and induces a one-base-pair DNA bulge at superhelix location 2 (SHL2), with the tracking strand showing greater distortion than the guide strand. The DNA distortion propagates to the proximal end, leading to staggered translocation of the two strands. The binding of ADP-BeFx triggers a closed conformation of the enzyme, resetting the nucleosome to a relaxed state. Snf2 shows altered interactions with the DNA in different nucleotide states, providing the structural basis for DNA translocation. Together, our findings suggest a fundamental mechanism for the DNA translocation that underlies chromatin remodelling.


Assuntos
Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/genética , Cromatina/metabolismo , DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Fatores de Transcrição/metabolismo , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/química , Apoproteínas/química , Apoproteínas/metabolismo , Transporte Biológico , Cromatina/química , DNA/química , DNA/genética , Transferência Ressonante de Energia de Fluorescência , Modelos Moleculares , Nucleossomos/química , Nucleossomos/metabolismo , Nucleotídeos/química , Nucleotídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Fatores de Transcrição/química
9.
J Allergy Clin Immunol ; 153(6): 1668-1680, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38191060

RESUMO

BACKGROUND: CLEC16A intron 19 has been identified as a candidate locus for common variable immunodeficiency (CVID). OBJECTIVES: This study sought to elucidate the molecular mechanism by which variants at the CLEC16A intronic locus may contribute to the pathogenesis of CVID. METHODS: The investigators performed fine-mapping of the CLEC16A locus in a CVID cohort, then deleted the candidate functional SNP in T-cell lines by the CRISPR-Cas9 technique and conducted RNA-sequencing to identify target gene(s). The interactions between the CLEC16A locus and its target genes were identified using circular chromosome conformation capture. The transcription factor complexes mediating the chromatin interactions were determined by proteomic approach. The molecular pathways regulated by the CLEC16A locus were examined by RNA-sequencing and reverse phase protein array. RESULTS: This study showed that the CLEC16A locus is an enhancer regulating expression of multiple target genes including a distant gene ATF7IP2 through chromatin interactions. Distinct transcription factor complexes mediate the chromatin interactions in an allele-specific manner. Disruption of the CLEC16A locus affects the AKT signaling pathway, as well as the molecular response of CD4+ T cells to immune stimulation. CONCLUSIONS: Through multiomics and targeted experimental approaches, this study elucidated the underlying target genes and signaling pathways involved in the genetic association of CLEC16A with CVID, and highlighted plausible molecular targets for developing novel therapeutics.


Assuntos
Imunodeficiência de Variável Comum , Íntrons , Lectinas Tipo C , Proteínas de Transporte de Monossacarídeos , Humanos , Lectinas Tipo C/genética , Íntrons/genética , Proteínas de Transporte de Monossacarídeos/genética , Imunodeficiência de Variável Comum/genética , Imunodeficiência de Variável Comum/imunologia , Polimorfismo de Nucleotídeo Único , Regulação da Expressão Gênica , Feminino , Masculino , Transdução de Sinais/genética , Linfócitos T CD4-Positivos/imunologia , Adulto
10.
Nano Lett ; 24(1): 402-410, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38153842

RESUMO

The ability of drugs to cross the blood-brain barrier (BBB) is crucial for treating central nervous system (CNS) disorders. Inspired by natural viruses, here we report a glucose and polydopamine (GPDA) coating method for the construction of delivery platforms for efficient BBB crossing. Such platforms are composed of nanoparticles (NPs) as the inner core and surface functionalized with glucose-poly(ethylene glycol) (Glu-PEG) and polydopamine (PDA) coating. Glu-PEG provides selective targeting of the NPs to brain capillary endothelial cells (BCECs), while PDA enhances the transcytosis of the NPs. This strategy is applicable to gold NPs (AuNPs), silica, and polymeric NPs, which achieves as high as 1.87% of the injected dose/g of brain in healthy brain tissues. In addition, the GPDA coating manages to deliver NPs into the tumor tissue in the orthotopic glioblastoma model. Our study may provide a universal strategy for the construction of delivery platforms for efficient BBB crossing and brain drug delivery.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Células Endoteliais , Ouro/farmacologia , Encéfalo , Sistemas de Liberação de Medicamentos/métodos
11.
BMC Genomics ; 25(1): 327, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565997

RESUMO

Food security is important for the ever-growing global population. Soybean, Glycine max (L.) Merr., is cultivated worldwide providing a key source of food, protein and oil. Hence, it is imperative to maintain or to increase its yield under different conditions including challenges caused by abiotic and biotic stresses. In recent years, the soybean pod-sucking stinkbug Riptortus pedestris has emerged as an important agricultural insect pest in East, South and Southeast Asia. Here, we present a genomics resource for R. pedestris including its genome assembly, messenger RNA (mRNA) and microRNA (miRNA) transcriptomes at different developmental stages and from different organs. As insect hormone biosynthesis genes (genes involved in metamorphosis) and their regulators such as miRNAs are potential targets for pest control, we analyzed the sesquiterpenoid (juvenile) and ecdysteroid (molting) hormone biosynthesis pathway genes including their miRNAs and relevant neuropeptides. Temporal gene expression changes of these insect hormone biosynthesis pathways were observed at different developmental stages. Similarly, a diet-specific response in gene expression was also observed in both head and salivary glands. Furthermore, we observed that microRNAs (bantam, miR-14, miR-316, and miR-263) of R. pedestris fed with different types of soybeans were differentially expressed in the salivary glands indicating a diet-specific response. Interestingly, the opposite arms of miR-281 (-5p and -3p), a miRNA involved in regulating development, were predicted to target Hmgs genes of R. pedestris and soybean, respectively. These observations among others highlight stinkbug's responses as a function of its interaction with soybean. In brief, the results of this study not only present salient findings that could be of potential use in pest management and mitigation but also provide an invaluable resource for R. pedestris as an insect model to facilitate studies on plant-pest interactions.


Assuntos
Heterópteros , Hormônios de Inseto , MicroRNAs , Animais , Glycine max/genética , Heterópteros/genética , Transcriptoma , MicroRNAs/genética , Perfilação da Expressão Gênica
12.
J Am Chem Soc ; 146(21): 14754-14764, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38754363

RESUMO

Lithium-sulfur (Li-S) batteries are highly considered as next-generation energy storage techniques. Weakly solvating electrolyte with low lithium polysulfide (LiPS) solvating power promises Li anode protection and improved cycling stability. However, the cathodic LiPS kinetics is inevitably deteriorated, resulting in severe cathodic polarization and limited energy density. Herein, the LiPS kinetic degradation mechanism in weakly solvating electrolytes is disclosed to construct high-energy-density Li-S batteries. Activation polarization instead of concentration or ohmic polarization is identified as the dominant kinetic limitation, which originates from higher charge-transfer activation energy and a changed rate-determining step. To solve the kinetic issue, a titanium nitride (TiN) electrocatalyst is introduced and corresponding Li-S batteries exhibit reduced polarization, prolonged cycling lifespan, and high actual energy density of 381 Wh kg-1 in 2.5 Ah-level pouch cells. This work clarifies the LiPS reaction mechanism in protective weakly solvating electrolytes and highlights the electrocatalytic regulation strategy toward high-energy-density and long-cycling Li-S batteries.

13.
Nat Prod Rep ; 41(6): 905-934, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38390645

RESUMO

Covering: 2017.01 to 2023.11Natural products biosynthesized by myxobacteria are appealing due to their sophisticated chemical skeletons, remarkable biological activities, and intriguing biosynthetic enzymology. This review aims to systematically summarize the advances in the discovery methods, new structures, and bioactivities of myxobacterial NPs reported in the period of 2017-2023. In addition, the peculiar biosynthetic pathways of several structural families are also highlighted.


Assuntos
Produtos Biológicos , Myxococcales , Produtos Biológicos/metabolismo , Produtos Biológicos/química , Myxococcales/metabolismo , Myxococcales/química , Estrutura Molecular , Vias Biossintéticas , Descoberta de Drogas
14.
PLoS Med ; 21(5): e1004389, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38728364

RESUMO

BACKGROUND: It remains unclear whether intensification of the chemotherapy backbone in tandem with an anti-EGFR can confer superior clinical outcomes in a cohort of RAS/BRAF wild-type colorectal cancer (CRC) patients with initially unresectable colorectal liver metastases (CRLM). To that end, we sought to comparatively evaluate the efficacy and safety of cetuximab plus FOLFOXIRI (triplet arm) versus cetuximab plus FOLFOX (doublet arm) as a conversion regimen (i.e., unresectable to resectable) in CRC patients with unresectable CRLM. METHODS AND FINDINGS: This open-label, randomized clinical trial was conducted from April 2018 to December 2022 in 7 medical centers across China, enrolling 146 RAS/BRAF wild-type CRC patients with initially unresectable CRLM. A stratified blocked randomization method was utilized to assign patients (1:1) to either the cetuximab plus FOLFOXIRI (n = 72) or cetuximab plus FOLFOX (n = 74) treatment arms. Stratification factors were tumor location (left versus right) and resectability (technically unresectable versus ≥5 metastases). The primary outcome was the objective response rate (ORR). Secondary outcomes included the median depth of tumor response (DpR), early tumor shrinkage (ETS), R0 resection rate, progression-free survival (PFS), overall survival (not mature at the time of analysis), and safety profile. Radiological tumor evaluations were conducted by radiologists blinded to the group allocation. Primary efficacy analyses were conducted based on the intention-to-treat population, while safety analyses were performed on patients who received at least 1 line of chemotherapy. A total of 14 patients (9.6%) were lost to follow-up (9 in the doublet arm and 5 in the triplet arm). The ORR was comparable following adjustment for stratification factors, with 84.7% versus 79.7% in the triplet and doublet arms, respectively (odds ratio [OR] 0.70; 95% confidence intervals [CI] [0.30, 1.67], Chi-square p = 0.42). Moreover, the ETS rate showed no significant difference between the triplet and doublet arms (80.6% (58/72) versus 77.0% (57/74), OR 0.82, 95% CI [0.37, 1.83], Chi-square p = 0.63). Although median DpR was higher in the triplet therapy group (59.6%, interquartile range [IQR], [50.0, 69.7] versus 55.0%, IQR [42.8, 63.8], Mann-Whitney p = 0.039), the R0/R1 resection rate with or without radiofrequency ablation/stereotactic body radiation therapy was comparable with 54.2% (39/72) of patients in the triplet arm versus 52.7% (39/74) in the doublet arm. At a median follow-up of 26.2 months (IQR [12.8, 40.5]), the median PFS was 11.8 months in the triplet arm versus 13.4 months in the doublet arm (hazard ratio [HR] 0.74, 95% CI [0.50, 1.11], Log-rank p = 0.14). Grade ≥ 3 events were reported in 47.2% (35/74) of patients in the doublet arm and 55.9% (38/68) of patients in the triplet arm. The triplet arm was associated with a higher incidence of grade ≥ 3 neutropenia (44.1% versus 27.0%, p = 0.03) and diarrhea (5.9% versus 0%, p = 0.03). The primary limitations of the study encompass the inherent bias in subjective surgical decisions regarding resection feasibility, as well as the lack of a centralized assessment for ORR and resection. CONCLUSIONS: The combination of cetuximab with FOLFOXIRI did not significantly improve ORR compared to cetuximab plus FOLFOX. Despite achieving an enhanced DpR, this improvement did not translate into improved R0 resection rates or PFS. Moreover, the triplet arm was associated with an increase in treatment-related toxicity. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03493048.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Camptotecina , Cetuximab , Neoplasias Colorretais , Fluoruracila , Leucovorina , Neoplasias Hepáticas , Compostos Organoplatínicos , Proteínas Proto-Oncogênicas B-raf , Humanos , Cetuximab/administração & dosagem , Cetuximab/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Masculino , Pessoa de Meia-Idade , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/tratamento farmacológico , Feminino , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Leucovorina/uso terapêutico , Leucovorina/administração & dosagem , Fluoruracila/uso terapêutico , Fluoruracila/administração & dosagem , Compostos Organoplatínicos/uso terapêutico , Compostos Organoplatínicos/administração & dosagem , Proteínas Proto-Oncogênicas B-raf/genética , Idoso , Adulto , Camptotecina/análogos & derivados , Camptotecina/uso terapêutico , Camptotecina/administração & dosagem , Resultado do Tratamento , Proteínas ras/genética
15.
Cancer Sci ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623968

RESUMO

Enhancing sensitivity to sorafenib can significantly extend the duration of resistance to it, offering substantial benefits for treating patients with hepatocellular carcinoma (HCC). However, the role of ferroptosis in influencing sorafenib sensitivity within HCC remains pivotal. The enhancer of zeste homolog 2 (EZH2) plays a significant role in promoting malignant progression in HCC, yet the relationship between ferroptosis, sorafenib sensitivity, and EZH2 is not entirely clear. Bioinformatic analysis indicates elevated EZH2 expression in HCC, predicting an unfavorable prognosis. Overexpressing EZH2 can drive HCC cell proliferation while simultaneously reducing ferroptosis. Further analysis reveals that EZH2 amplifies the modification of H3K27 me3, thereby influencing TFR2 expression. This results in decreased RNA polymerase II binding within the TFR2 promoter region, leading to reduced TFR2 expression. Knocking down EZH2 amplifies sorafenib sensitivity in HCC cells. In sorafenib-resistant HepG2(HepG2-SR) cells, the expression of EZH2 is increased. Moreover, combining tazemetostat-an EZH2 inhibitor-with sorafenib demonstrates significant synergistic ferroptosis-promoting effects in HepG2-SR cells. In conclusion, our study illustrates how EZH2 epigenetically regulates TFR2 expression through H3K27 me3, thereby suppressing ferroptosis. The combination of the tazemetostat with sorafenib exhibits superior synergistic effects in anticancer therapy and sensitizes the HepG2-SR cells to sorafenib, shedding new light on delaying and ameliorating sorafenib resistance.

16.
J Hepatol ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38782118

RESUMO

BACKGROUND & AIMS: Hepatocellular Carcinoma (HCC) is a highly fatal cancer characterized by high intra-tumor heterogeneity (ITH). A panoramic understanding of its tumor evolution, in relation to its clinical trajectory, may provide novel prognostic and treatment strategies. METHODS: Through the Asia-Pacific Hepatocellular Carcinoma (AHCC) trials group (NCT03267641), we recruited one of the largest prospective cohorts of HCC with over 600 whole genome and transcriptome samples from 123 treatment-naïve patients. RESULTS: Using a multi-region sampling approach, we revealed seven convergent genetic evolutionary paths governed by the early driver mutations, late copy number variations and viral integrations, which stratify patient clinical trajectories after surgical resection. Furthermore, such evolutionary paths shaped the molecular profiles, leading to distinct transcriptomic subtypes. Most significantly, although we found the coexistence of multiple transcriptomic subtypes within certain tumors, patient prognosis was best predicted by the most aggressive cell fraction of the tumor, rather than by overall degree of transcriptomic ITH level - a phenomenon we termed the 'bad apple' effect. Finally, we found that characteristics throughout early and late tumor evolution provide significant and complementary prognostic power in predicting patient survival. CONCLUSIONS: Taken together, our study generated a comprehensive landscape of evolutionary history for HCC and provided a rich multi-omics resource for understanding tumor heterogeneity and clinical trajectories. CLINICAL TRIAL NUMBER: NCT03267641 (Observational cohort) IMPACT AND IMPLICATIONS: This prospective study, utilizing comprehensive multi-sector, multi-omics sequencing and clinical data from surgically resected HCC, reveals critical insights into the role of tumor evolution and intra-tumor heterogeneity (ITH) in determining the prognosis of Hepatocellular Carcinoma (HCC). These findings are invaluable for oncology researchers and clinicians, as they underscore the influence of distinct evolutionary paths and the 'bad apple' effect, where the most aggressive tumor fraction dictates disease progression. These insights not only enhance prognostic accuracy post-surgical resection but also pave the way for developing personalized therapies tailored to specific tumor evolutionary and transcriptomic profiles. The co-existence of multiple sub-types within the same tumor prompts a re-appraisal of the utilities of depending on single samples to represent the entire tumor and suggests the need for clinical molecular imaging. This research thus marks a significant step forward in the clinical understanding and management of HCC, underscoring the importance of integrating tumor evolutionary dynamics and multi-omics biomarkers into therapeutic decision-making.

17.
J Neuroinflammation ; 21(1): 29, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38246987

RESUMO

Demyelination and failure of remyelination in the central nervous system (CNS) characterize a number of neurological disorders. Spontaneous remyelination in demyelinating diseases is limited, as oligodendrocyte precursor cells (OPCs), which are often present in demyelinated lesions in abundance, mostly fail to differentiate into oligodendrocytes, the myelinating cells in the CNS. In addition to OPCs, the lesions are assembled numbers of activated resident microglia/infiltrated macrophages; however, the mechanisms and potential role of interactions between the microglia/macrophages and OPCs are poorly understood. Here, we generated a transcriptional profile of exosomes from activated microglia, and found that miR-615-5p was elevated. miR-615-5p bound to 3'UTR of myelin regulator factor (MYRF), a crucial myelination transcription factor expressed in oligodendrocyte lineage cells. Mechanistically, exosomes from activated microglia transferred miR-615-5p to OPCs, which directly bound to MYRF and inhibited OPC maturation. Furthermore, an effect of AAV expressing miR-615-5p sponge in microglia was tested in experimental autoimmune encephalomyelitis (EAE) and cuprizone (CPZ)-induced demyelination model, the classical mouse models of multiple sclerosis. miR-615-5p sponge effectively alleviated disease progression and promoted remyelination. This study identifies miR-615-5p/MYRF as a new target for the therapy of demyelinating diseases.


Assuntos
Encefalomielite Autoimune Experimental , Exossomos , MicroRNAs , Bainha de Mielina , Animais , Camundongos , Exossomos/metabolismo , Microglia/metabolismo , MicroRNAs/genética
18.
Small ; 20(16): e2306989, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38032164

RESUMO

Hybrid organic-inorganic perovskite (HOIP) ferroelectric materials have great potential for developing self-powered electronic transducers owing to their impressive piezoelectric performance, structural tunability and low processing temperatures. Nevertheless, their inherent brittle and low elastic moduli limit their application in electromechanical conversion. Integration of HOIP ferroelectrics and soft polymers is a promising solution. In this work, a hybrid organic-inorganic rare-earth double perovskite ferroelectric, [RM3HQ]2RbPr(NO3)6 (RM3HQ = (R)-N-methyl-3-hydroxylquinuclidinium) is presented, which possesses multiaxial nature, ferroelasticity and satisfactory piezoelectric properties, including piezoelectric charge coefficient (d33) of 102.3 pC N-1 and piezoelectric voltage coefficient (g33) of 680 × 10-3 V m N-1. The piezoelectric generators (PEG) based on composite films of [RM3HQ]2RbPr(NO3)6@polyurethane (PU) can generate an open-circuit voltage (Voc) of 30 V and short-circuit current (Isc) of 18 µA, representing one of the state-of-the-art PEGs to date. This work has promoted the exploration of new HOIP ferroelectrics and their development of applications in electromechanical conversion devices.

19.
J Transl Med ; 22(1): 571, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38879493

RESUMO

BACKGROUND: No reliable clinical tools exist to predict acute kidney injury (AKI) progression. We aim to explore a scoring system for predicting the composite outcome of progression to severe AKI or death within seven days among early AKI patients after cardiac surgery. METHODS: In this study, we used two independent cohorts, and patients who experienced mild/moderate AKI within 48 h after cardiac surgery were enrolled. Eventually, 3188 patients from the MIMIC-IV database were used as the derivation cohort, while 499 patients from the Zhongshan cohort were used as external validation. The primary outcome was defined by the composite outcome of progression to severe AKI or death within seven days after enrollment. The variables identified by LASSO regression analysis were entered into logistic regression models and were used to construct the risk score. RESULTS: The composite outcome accounted for 3.7% (n = 119) and 7.6% (n = 38) of the derivation and validation cohorts, respectively. Six predictors were assembled into a risk score (AKI-Pro score), including female, baseline eGFR, aortic surgery, modified furosemide responsiveness index (mFRI), SOFA, and AKI stage. And we stratified the risk score into four groups: low, moderate, high, and very high risk. The risk score displayed satisfied predictive discrimination and calibration in the derivation and validation cohort. The AKI-Pro score discriminated the composite outcome better than CRATE score, Cleveland score, AKICS score, Simplified renal index, and SRI risk score (all P < 0.05). CONCLUSIONS: The AKI-Pro score is a new clinical tool that could assist clinicians to identify early AKI patients at high risk for AKI progression or death.


Assuntos
Injúria Renal Aguda , Procedimentos Cirúrgicos Cardíacos , Progressão da Doença , Humanos , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/diagnóstico , Feminino , Masculino , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Pessoa de Meia-Idade , Idoso , Fatores de Risco , Estudos de Coortes , Índice de Gravidade de Doença , Curva ROC , Medição de Risco , Prognóstico
20.
J Transl Med ; 22(1): 326, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566102

RESUMO

BACKGROUND: The effects of gut microbiota and metabolites on the responses to immune checkpoint inhibitors (ICIs) in advanced epidermal growth factor receptor (EGFR) wild-type non-small cell lung cancer (NSCLC) have been studied. However, their effects on EGFR-mutated (EGFR +) NSCLC remain unknown. METHODS: We prospectively recorded the clinicopathological characteristics of patients with advanced EGFR + NSCLC and assessed potential associations between the use of antibiotics or probiotics and immunotherapy efficacy. Fecal samples were collected at baseline, early on-treatment, response and progression status and were subjected to metagenomic next-generation sequencing and ultra-high-performance liquid chromatography-mass spectrometry analyses to assess the effects of gut microbiota and metabolites on immunotherapy efficacy. RESULTS: The clinical data of 74 advanced EGFR + NSCLC patients were complete and 18 patients' fecal samples were dynamically collected. Patients that used antibiotics had shorter progression-free survival (PFS) (mPFS, 4.8 vs. 6.7 months; P = 0.037); probiotics had no impact on PFS. Two dynamic types of gut microbiota during immunotherapy were identified: one type showed the lowest relative abundance at the response time point, whereas the other type showed the highest abundance at the response time point. Metabolomics revealed significant differences in metabolites distribution between responders and non-responders. Deoxycholic acid, glycerol, and quinolinic acid were enriched in responders, whereas L-citrulline was enriched in non-responders. There was a significant correlation between gut microbiota and metabolites. CONCLUSIONS: The use of antibiotics weakens immunotherapy efficacy in patients with advanced EGFR + NSCLC. The distribution characteristics and dynamic changes of gut microbiota and metabolites may indicate the efficacy of immunotherapy in advanced EGFR + NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Microbioma Gastrointestinal , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamento farmacológico , Imunoterapia , Receptores ErbB/genética , Antibacterianos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA