Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 37(5): e22933, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37093709

RESUMO

FURIN, a member of the mammalian proprotein convertases (PCs) family, can promote the proteolytic maturation of proproteins. It has been shown that FURIN plays an important role in the progression of atherosclerosis (AS). Current evidence indicates that autophagy widely participates in atherogenesis. This study aimed to explore whether FURIN could affect atherogenesis via autophagy. The effect of FURIN on autophagy was studied using aortic tissues from aortic dissection patients who had BENTALL surgery, as well as macrophages and ApoE-/- mice. In atherosclerotic plaques of aortic tissues from patients, FURIN expression and autophagy were elevated. In macrophages, FURIN-shRNA and FURIN-overexpression lentivirus were used to intervene in FURIN expression. The results showed that FURIN overexpression accelerated LC3 formation in macrophages during the autophagosome formation phase. Furthermore, FURIN-induced autophagy resulted in lower lipid droplet concentrations in macrophages. The western blot revealed that FURIN regulated autophagy via the AMPK/mTOR/ULK1/PI3KIII signaling pathway. In vivo, FURIN overexpression resulted in increased macrophage LC3 formation in ApoE-/- mice atherosclerotic plaques, confirming that FURIN could inhibit the progression of AS by promoting macrophage autophagy. The present study demonstrated that FURIN suppressed the progression of AS by promoting macrophage autophagy via the AMPK/mTOR/ULK1/PI3KIII signaling pathway, which attenuated atherosclerotic lesion formation. Based on this data, current findings add to our understanding of the complexity of AS.


Assuntos
Aterosclerose , Placa Aterosclerótica , Camundongos , Animais , Placa Aterosclerótica/metabolismo , Furina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos Knockout para ApoE , Aterosclerose/metabolismo , Macrófagos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Autofagia/genética , Apolipoproteínas E/genética , Mamíferos/metabolismo
2.
Inflamm Res ; 73(6): 1033-1046, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38630134

RESUMO

OBJECTIVE: Sepsis-induced cardiomyopathy (SICM) is a life-threatening complication. Phospholipase D2 (PLD2) is crucial in mediating inflammatory reactions and is associated with the prognosis of patients with sepsis. Whether PLD2 is involved in the pathophysiology of SICM remains unknown. This study aimed to investigate the effect of PLD2 knockout on SICM and to explore potential mechanisms. METHODS: The SICM model was established using cecal ligation and puncture in wild-type and PLD2-knockout mice and lipopolysaccharide (LPS)-induced H9C2 cardiomyocytes. Transfection with PLD2-shRNA lentivirus and a PLD2 overexpression plasmid were used to interfere with PLD2 expression in H9C2 cells. Cardiac pathological alterations, cardiac function, markers of myocardial injury, and inflammatory factors were used to evaluate the SICM model. The expression of pyroptosis-related proteins (NLRP3, cleaved caspase 1, and GSDMD-N) was assessed using western blotting, immunofluorescence, and immunohistochemistry. RESULTS: SICM mice had myocardial tissue damage, increased inflammatory response, and impaired heart function, accompanied by elevated PLD2 expression. PLD2 deletion improved cardiac histological changes, mitigated cTNI production, and enhanced the survival of the SICM mice. Compared with controls, PLD2-knockdown H9C2 exhibits a decrease in inflammatory markers and lactate dehydrogenase production, and scanning electron microscopy results suggest that pyroptosis may be involved. The overexpression of PLD2 increased the expression of NLRP3 in cardiomyocytes. In addition, PLD2 deletion decreased the expression of pyroptosis-related proteins in SICM mice and LPS-induced H9C2 cells. CONCLUSION: PLD2 deletion is involved in SICM pathogenesis and is associated with the inhibition of the myocardial inflammatory response and pyroptosis through the NLRP3/caspase 1/GSDMD pathway.


Assuntos
Cardiomiopatias , Caspase 1 , Camundongos Knockout , Miócitos Cardíacos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fosfolipase D , Piroptose , Sepse , Animais , Masculino , Camundongos , Ratos , Cardiomiopatias/etiologia , Cardiomiopatias/genética , Caspase 1/metabolismo , Caspase 1/genética , Linhagem Celular , Gasderminas , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo , Fosfolipase D/genética , Fosfolipase D/metabolismo , Sepse/complicações , Sepse/genética , Transdução de Sinais
3.
BMC Cardiovasc Disord ; 24(1): 138, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431594

RESUMO

AIMS: Recent studies have indicated an association between intestinal flora and lipids. However, observational studies cannot indicate causality. In this study, we aimed to investigate the potentially causal relationships between the intestinal flora and blood lipids. METHODS: We performed a bidirectional two-sample Mendelian Randomization (MR) analysis to investigate the causal relationship between intestinal flora and blood lipids. Summary statistics of genome-wide association studies (GWASs) for the 211 intestinal flora and blood lipid traits (n = 5) were obtained from public datasets. Five recognized MR methods were applied to assess the causal relationship with lipids, among which, the inverse-variance weighted (IVW) regression was used as the primary MR method. A series of sensitivity analyses were performed to test the robustness of the causal estimates. RESULTS: The results indicated a potential causal association between 19 intestinal flora and dyslipidemia in humans. Genus Ruminococcaceae, Christensenellaceae, Parasutterella, Terrisporobacter, Parabacteroides, Class Erysipelotrichia, Family Erysipelotrichaceae, and order Erysipelotrichales were associated with higher dyslipidemia, whereas genus Oscillospira, Peptococcus, Ruminococcaceae UCG010, Ruminococcaceae UCG011, Dorea, and Family Desulfovibrionaceae were associated with lower dyslipidemia. After using the Bonferroni method for multiple testing correction, Only Desulfovibrionaceae [Estimate = -0.0418, 95% confidence interval [CI]: 0.9362-0.9826, P = 0.0007] exhibited stable and significant negative associations with ApoB levels. The inverse MR analysis did not find a significant causal effect of lipids on the intestinal flora. Additionally, no significant heterogeneity or horizontal pleiotropy for IVs was observed in the analysis. CONCLUSION: The study suggested a causal relationship between intestinal flora and dyslipidemia. These findings will provide a meaningful reference to discover dyslipidemia for intervention to address the problems in the clinic.


Assuntos
Aterosclerose , Dislipidemias , Microbioma Gastrointestinal , Humanos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Aterosclerose/diagnóstico , Aterosclerose/epidemiologia , Aterosclerose/genética
4.
Environ Res ; 249: 118402, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309560

RESUMO

Microcystins (MC)-RR is a significant analogue of MC-LR, which has been identified as a hepatotoxin capable of influencing lipid metabolism and promoting the progression of liver-related metabolic diseases. However, the toxicity and biological function of MC-RR are still not well understood. In this study, the toxic effects and its role in lipid metabolism of MC-RR were investigated in hepatoblastoma cells (HepG2cells). The results demonstrated that MC-RR dose-dependently reduced cell viability and induced apoptosis. Additionally, even at low concentrations, MC-RR promoted lipid accumulation through up-regulating levels of triglyceride, total cholesterol, phosphatidylcholines and phosphatidylethaolamine in HepG2 cells, with no impact on cell viability. Proteomics and transcriptomics analysis further revealed significant alterations in the protein and gene expression profiles in HepG2 cells treated with MC-RR. Bioinformatic analysis, along with subsequent validation, indicated the upregulation of CD36 and activation of the AMPK and PI3K/AKT/mTOR in response to MC-RR exposure. Finally, knockdown of CD36 markedly ameliorated MC-RR-induced lipid accumulation in HepG2 cells. These findings collectively suggest that MC-RR promotes lipid accumulation in HepG2 cells through CD36-mediated signal pathway and fatty acid uptake. Our findings provide new insights into the hepatotoxic mechanism of MC-RR.


Assuntos
Antígenos CD36 , Ácidos Graxos , Metabolismo dos Lipídeos , Microcistinas , Transdução de Sinais , Humanos , Células Hep G2 , Antígenos CD36/metabolismo , Antígenos CD36/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Microcistinas/toxicidade , Transdução de Sinais/efeitos dos fármacos , Ácidos Graxos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos
5.
BMC Pregnancy Childbirth ; 24(1): 143, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368325

RESUMO

PURPOSE: Acknowledging the associated risk factors may have a positive impact on reducing the incidence of ectopic pregnancy (EP). In recent years, body mass index (BMI) has been mentioned in research. However, few studies are available and controversial on the relationship between EP and BMI. METHODS: We retrospectively studied the EP women as a case group and the deliveries as a control group in the central hospital of Wuhan during 2017 ~ 2021. χ2 test of variables associated with ectopic pregnancy was performed to find differences. Univariate and multivariate binary logistic regression analysis was conducted to analyze the association of the variables of age, parity, history of induced abortion, history of ectopic pregnancy, history of spontaneous abortion, history of appendectomy surgery and BMI (< 18.5 kg/m2, 18.5 ~ 24.9 kg/m2, 25 kg/m2 ~ 29.9 kg/m2, ≥ 30 kg /m2) with EP. RESULTS: They were 659 EP and 1460 deliveries. The variables of age, parity, history of induced abortion, history of ectopic pregnancy and BMI were different significantly(P < 0.05). Multivariate analysis showed that the variables of age > 35 years old [(OR (Odds Ratio), 5.415; 95%CI (Confidence Interval), 4.006 ~ 7.320, P < 0.001], history of ectopic pregnancy (OR, 3.944; 95%CI, 2.405 ~ 6.467; P < 0.001), history of induced abortion(OR, 3.365; 95%CI, 2.724 ~ 4.158, P < 0.001) and low BMI (< 18.5 kg/m2) (OR, 1.929; 95%CI, 1.416 ~ 2.628, P < 0.001])increased the risk of EP. CONCLUSION: The history of ectopic pregnancy, history of induced abortion and age > 35 years old were the risk factors with EP. In addition to these traditional factors, we found low BMI (< 18.5 kg/m2) with women may increase the risk to EP.


Assuntos
Aborto Induzido , Gravidez Ectópica , Gravidez , Feminino , Humanos , Adulto , Estudos Retrospectivos , Estudos de Casos e Controles , Índice de Massa Corporal , Gravidez Ectópica/epidemiologia , Gravidez Ectópica/etiologia , Aborto Induzido/efeitos adversos , Fatores de Risco
6.
Cytogenet Genome Res ; 162(10): 541-559, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36521430

RESUMO

Overweight and obese (OW/OB) adults are at increased risk of hypertension due to visceral adipose tissue (VAT) inflammation. In this study, we explored gene level differences in the VAT of hypertensive and normotensive OW/OB patients. VAT samples obtained from six OW/OB adults (three hypertensive, three normotensive) were subjected to transcriptome sequencing analysis. Gene set enrichment analysis was conducted for all gene expression data to identify differentially expressed genes (DEGs) with |log2 (fold change)| ≥ 1 and q < 0.05. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analyses were performed on the DEGs, and hub genes were identified by constructing a protein-protein interaction (PPI) network. The proposed hub genes were validated using quantitative real-time PCR in ten other samples from five hypertensive and five normotensive patients. In addition, we performed ROC analysis and Spearman correlation analysis. A total of 84 DEGs were identified between VAT samples from OW/OB patients with and without hypertension, among which 21 were significantly upregulated and 63 were significantly downregulated. Bioinformatics analysis revealed that spleen function was related to hypertension in OW/OB adults. Meanwhile, PPI network analysis identified the following top 10 hub genes: CD79A, CR2, SELL, CD22, IL7R, CCR7, TNFRSF13C, CXCR4, POU2AF1, and JAK3. Through qPCR verification, we found that CXCR4, CD22, and IL7R were statistically significant. qPCR verification suggested that RELA was statistically significant. However, qPCR verification indicated that NFKB1 and KLF2 were not statistically significant. These hub genes were mainly regulated by the transcription factor RELA. The AUC of ROC analysis for CXCR4, IL7R, and CD22 was 0.92. What is more, VAT CXCR4 and CD22 were positively related to RELA relative expression levels. Taken together, our research demonstrates that CXCR4, IL7R, and CD22 related to VAT in hypertensive OW/OB adults could serve as future therapeutic targets.

7.
Glycobiology ; 31(8): 947-958, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-33909026

RESUMO

Mucin-type O-glycosylation is initiated by the polypeptide: N-acetylgalactosaminyltransferase (ppGalNAc-T) family of enzymes, which consists of 20 members in humans. Among them, unlike other ppGalNAc-Ts located in Golgi apparatus, ppGalNAc-T18 distributes primarily in the endoplasmic reticulum (ER) and non-catalytically regulates ER homeostasis and O-glycosylation. Here, we report the mechanism for ppGalNAc-T18 ER localization and the function of each structural domain of ppGalNAc-T18. By using ppGalNAc-T18 truncation mutants, we revealed that the luminal stem region and catalytic domain of ppGalNAc-T18 are essential for ER localization, whereas the lectin domain and N-glycosylation of ppGalNAc-T18 are not required. In the absence of the luminal region (i.e., stem region, catalytic and lectin domains), the conserved Golgi retention motif RKTK within the cytoplasmic tail combined with the transmembrane domain ensure ER export and Golgi retention, as observed for other Golgi resident ppGalNAc-Ts. Results from coimmunoprecipitation assays showed that the luminal region interacts with ER resident proteins UGGT1, PLOD3 and LPCAT1. Furthermore, flow cytometry analysis showed that the entire luminal region is required for the non-catalytic O-GalNAc glycosylation activity of ppGalNAc-T18. The findings reveal a novel subcellular localization mechanism of ppGalNAc-Ts and provide a foundation to further characterize the function of ppGalNAc-T18 in the ER.


Assuntos
N-Acetilgalactosaminiltransferases , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Retículo Endoplasmático/metabolismo , Glucosiltransferases , Glicosilação , Complexo de Golgi/metabolismo , Humanos , N-Acetilgalactosaminiltransferases/metabolismo , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase , Polipeptídeo N-Acetilgalactosaminiltransferase
8.
Environ Microbiol ; 23(4): 2054-2069, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33314494

RESUMO

Indole is well known as an interspecies signalling molecule to modulate bacterial physiology; however, it is not clear how the indole signal is perceived and responded to by plant growth promoting rhizobacteria (PGPR) in the rhizosphere. Here, we demonstrated that indole enhanced the antibiotic tolerance of Pseudomonas fluorescens 2P24, a PGPR well known for its biocontrol capacity. Proteomic analysis revealed that indole influenced the expression of multiple genes including the emhABC operon encoding a major multidrug efflux pump. The expression of emhABC was regulated by a TetR-family transcription factor EmhR, which was demonstrated to be an indole-responsive regulator. Molecular dynamics simulation showed that indole allosterically affected the distance between the two DNA-recognizing helices within the EmhR dimer, leading to diminished EmhR-DNA interaction. It was further revealed the EmhR ortholog in Pseudomonas syringae was also responsible for indole-induced antibiotic tolerance, suggesting this EmhR-dependent, indole-induced antibiotic tolerance is likely to be conserved among Pseudomonas species. Taken together, our results elucidated the molecular mechanism of indole-induced antibiotic tolerance in Pseudomonas species and had important implications on how rhizobacteria sense and respond to indole in the rhizosphere.


Assuntos
Pseudomonas fluorescens , Antibacterianos/farmacologia , Indóis , Proteômica , Pseudomonas , Pseudomonas fluorescens/genética
9.
Biochem Biophys Res Commun ; 529(1): 57-63, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32560819

RESUMO

Mucin-type O-glycosylation (hereafter referred to as O-GalNAc glycosylation) is one of the most abundant glycosylation on proteins. It is initiated by the members of polypeptide N-acetyl-α-galactosaminyltransferases (ppGalNAc-Ts) family. The ppGalNAc-Ts could be used as tool enzymes to modify target proteins including therapeutic glycoprotein drugs with O-GalNAc glycosylation at specific glycosylated sites in vitro. Obtaining a large amount of ppGalNAc-T can greatly increase the yield of therapeutic O-glycoprotein and reduce the culture costs. In this study, we reported a simple Escherichia coli (E. coli) expression system capable of producing human ppGalNAc-Ts. By co-expressing human PDI, we could simply obtain active ppGalNAc-Ts with high efficiency. Using the E. coli expressed ppGalNAc-T2, we site-specifically synthesized O-glycosylated IL-2 at the native glycosylated site Thr23 residue. These results reveal the E. coli system we constructed is suitable to produce active ppGalNAc-Ts and thus has the potential value for basic research and production of therapeutic O-glycoproteins in vitro.


Assuntos
Interleucina-2/análogos & derivados , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/metabolismo , Sequência de Aminoácidos , Biocatálise , Domínio Catalítico/genética , Dissulfetos/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Glicosilação , Humanos , Interleucina-2/biossíntese , Interleucina-2/química , Modelos Moleculares , N-Acetilgalactosaminiltransferases/química , Plasmídeos/genética , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Polipeptídeo N-Acetilgalactosaminiltransferase
10.
Cell Biol Int ; 42(11): 1523-1532, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30080287

RESUMO

Although microRNA-155 (miR-155) is implicated in the pathogenesis of several fibrotic diseases, information regarding its functional role in renal fibrosis is limited. The current study aims to investigate the effects of miR-155 on renal fibrosis in unilateral ureteral occlusion (UUO) mice. MiR-155 level was significantly increased in renal tissues of UUO mice and TGF-ß1-treated HK2 cells. Masson's trichrome staining showed that delivery of adeno-associated virus encoding miR-155 inhibitor led to a decrease in renal fibrosis induced by UUO. The increased expression of plasminogen activator inhibitor type 1, collagen III and collagen IV was also inhibited after miR-155 inhibition. In addition, miR-155 knockdown also prevented TGF-ß1-induced epithelial-mesenchymal transition, concomitantly with a restoration of E-cadherin expression and a decrease of vimentin expression. Computational analysis revealed that miR-155 directly targets at 3'UTR of PDE3A. Overexpression of miR-155 suppressed the luciferase activity and protein expression of PDE3A, whereas inhibition of miR-155 increased PDE3A luciferase activity and expression. Furthermore, miR-155 inhibited TGF-ß1-induced the increase of TGF-ß1 expression and Smad-2/3 phosphorylation in HK2 cells. In contrast, knockdown of PDE3A reversed the effect of miR-155 inhibition on TGF-ß1 expression. This study demonstrates that knockdown of miR-155 attenuates renal fibrosis via inhibiting TGF-ß1/Smad signaling activation by targeting the upstream molecule PDE3A. This study suggests that miR-155 inhibition may be a novel therapeutic approach for preventing fibrotic kidney diseases.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Nefropatias/genética , Nefropatias/patologia , Rim/patologia , MicroRNAs/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Sequência de Bases , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Fibrose , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Reprodutibilidade dos Testes , Obstrução Ureteral/genética , Obstrução Ureteral/patologia
11.
J Med Syst ; 42(2): 31, 2018 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-29297097

RESUMO

The original version of this article unfortunately contained a mistake. The reference #27 in the reference list is incorrect in that the individual chapter should be cited instead of the whole book.

12.
Appl Environ Microbiol ; 83(21)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28821548

RESUMO

Certain strains of biocontrol bacterium Pseudomonas fluorescens produce the secondary metabolite 2,4-diacetylphloroglucinol (2,4-DAPG) to antagonize soilborne phytopathogens in the rhizosphere. The gene cluster responsible for the biosynthesis of 2,4-DAPG is named phlACBDEFGH and it is still unclear how the pathway-specific regulator phlH within this gene cluster regulates the metabolism of 2,4-DAPG. Here, we found that PhlH in Pseudomonas fluorescens strain 2P24 represses the expression of the phlG gene encoding the 2,4-DAPG hydrolase by binding to a sequence motif overlapping with the -35 site recognized by σ70 factors. Through biochemical screening of PhlH ligands we identified the end product 2,4-DAPG and its biosynthetic intermediate monoacetylphloroglucinol (MAPG), which can act as signaling molecules to modulate the binding of PhlH to the target sequence and activate the expression of phlG Comparison of 2,4-DAPG production between the ΔphlH, ΔphlG, and ΔphlHG mutants confirmed that phlH and phlG impose negative feedback regulation over 2,4-DAPG biosynthesis. It was further demonstrated that the 2,4-DAPG degradation catalyzed by PhlG plays an insignificant role in 2,4-DAPG tolerance but contributes to bacterial growth advantages under carbon/nitrogen starvation conditions. Taken together, our data suggest that by monitoring and down-tuning in situ levels of 2,4-DAPG, the phlHG genes could dynamically modulate the metabolic loads attributed to 2,4-DAPG production and potentially contribute to rhizosphere adaptation.IMPORTANCE 2,4-DAPG, which is synthesized by biocontrol pseudomonad bacteria, is a broad-spectrum antibiotic against bacteria, fungi, oomycetes, and nematodes and plays an important role in suppressing soilborne plant pathogens. Although most of the genes in the 2,4-DAPG biosynthetic gene cluster (phl) have been characterized, it is still not clear how the pathway-specific regulator phlH is involved in 2,4-DAPG metabolism. This work revealed the role of PhlH in modulating 2,4-DAPG levels by controlling the expression of 2,4-DAPG hydrolase PhlG in response to 2,4-DAPG and MAPG. Since 2,4-DAPG biosynthesis imposes a metabolic burden on biocontrol pseudomonads, it is expected that the fine regulation of phlG by PhlH offers a way to dynamically modulate the metabolic loads attributed to 2,4-DAPG production.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Floroglucinol/análogos & derivados , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Vias Biossintéticas , Hidrolases/genética , Hidrolases/metabolismo , Floroglucinol/metabolismo , Pseudomonas fluorescens/enzimologia , Fatores de Transcrição/genética , Transcrição Gênica
13.
J Comput Aided Mol Des ; 31(12): 1053-1062, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29159521

RESUMO

Conformational conversion of the normal cellular prion protein, PrPC, into the misfolded isoform, PrPSc, is considered to be a central event in the development of fatal neurodegenerative diseases. Stabilization of prion protein at the normal cellular form (PrPC) with small molecules is a rational and efficient strategy for treatment of prion related diseases. However, few compounds have been identified as potent prion inhibitors by binding to the normal conformation of prion. In this work, to rational screening of inhibitors capable of stabilizing cellular form of prion protein, multiple approaches combining docking-based virtual screening, steady-state fluorescence quenching, surface plasmon resonance and thioflavin T fluorescence assay were used to discover new compounds interrupting PrPC to PrPSc conversion. Compound 3253-0207 that can bind to PrPC with micromolar affinity and inhibit prion fibrillation was identified from small molecule databases. Molecular dynamics simulation indicated that compound 3253-0207 can bind to the hotspot residues in the binding pocket composed by ß1, ß2 and α2, which are significant structure moieties in conversion from PrPC to PrPSc.


Assuntos
Príons , Avaliação Pré-Clínica de Medicamentos , Simulação de Dinâmica Molecular , Fármacos Neuroprotetores/química , Doenças Priônicas/tratamento farmacológico , Príons/antagonistas & inibidores , Príons/metabolismo , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
14.
J Med Syst ; 41(10): 165, 2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28895033

RESUMO

Hearing loss, a partial or total inability to hear, is known as hearing impairment. Untreated hearing loss can have a bad effect on normal social communication, and it can cause psychological problems in patients. Therefore, we design a three-category classification system to detect the specific category of hearing loss, which is beneficial to be treated in time for patients. Before the training and test stages, we use the technology of data augmentation to produce a balanced dataset. Then we use deep autoencoder neural network to classify the magnetic resonance brain images. In the stage of deep autoencoder, we use stacked sparse autoencoder to generate visual features, and softmax layer to classify the different brain images into three categories of hearing loss. Our method can obtain good experimental results. The overall accuracy of our method is 99.5%, and the time consuming is 0.078 s per brain image. Our proposed method based on stacked sparse autoencoder works well in classification of hearing loss images. The overall accuracy of our method is 4% higher than the best of state-of-the-art approaches.


Assuntos
Perda Auditiva , Algoritmos , Encéfalo , Humanos , Interpretação de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Reprodutibilidade dos Testes
15.
Biochim Biophys Acta Gen Subj ; 1868(2): 130537, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070584

RESUMO

BACKGROUND: Atherosclerosis is a complex disease with multiple molecular subtypes that are not yet fully understood. Recent studies have suggested that N6-methyladenosine (m6A) alterations may play a role in the pathogenesis of atherosclerosis. However, the relationship between m6A regulators and atherosclerosis remains unclear. METHODS: In this study, we analyzed the expression levels of 25 m6A regulators in a cohort of atherosclerosis (AS) and non-AS patients using the R "limma" package. We also used machine learning models, including random forest (RF), support vector machine (SVM), generalized linear model (GLM), and extreme gradient boosting (XGB), to predict the molecular subtypes of atherosclerosis based on m6A immune cell infiltration. RESULTS: We found that METTL3, YTHDF2, IGFBP1, and IGF2BP1 were overexpressed in AS patients compared to non-AS patients, while the other significant m6A regulators showed no significant difference. Our machine learning models achieved high accuracy in predicting the molecular subtypes of atherosclerosis based on m6A immune cell infiltration. CONCLUSION: Our study suggests that m6A alterations may play a role in the pathogenesis of atherosclerosis, and that machine learning models can be used to predict molecular subtypes of atherosclerosis based on m6A immune cell infiltration. These findings may have important implications for the detection and management of atherosclerosis.


Assuntos
Adenina , Aterosclerose , Humanos , Adenosina , Aterosclerose/genética , Modelos Lineares , Metiltransferases
16.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167027, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38237743

RESUMO

The monocyte recruitment and foam cell formation have been intensively investigated in atherosclerosis. Nevertheless, as the study progressed, it was obvious that crucial molecules participated in the monocyte recruitment and the membrane proteins in macrophages exhibited substantial glycosylation modifications. These modifications can exert a significant influence on protein functions and may even impact the overall progression of diseases. This article provides a review of the effects of glycosylation modifications on monocyte recruitment and foam cell formation. By elaborating on these effects, we aim to understand the underlying mechanisms of atherogenesis further and to provide new insights into the future treatment of atherosclerosis.


Assuntos
Aterosclerose , Células Espumosas , Humanos , Monócitos/metabolismo , Glicosilação , Aterosclerose/metabolismo , Macrófagos/metabolismo
17.
IEEE Trans Neural Netw Learn Syst ; 34(12): 10904-10918, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35544488

RESUMO

Open-domain question answering (QA) tasks require a model to retrieve inference chains associated with the answer from massive documents. The core of a QA model is the information filtering ability and reasoning ability. This article proposes a semantic knowledge reasoning graph model based on the multidimensional axiomatic fuzzy set (AFS), which can generate the knowledge graph (KG) and build reasoning paths for reading comprehension tasks through unsupervised learning. Moreover, taking advantage of the interpretable AFS framework enables the proposed model to have the ability to learn and analyze the semantic relationships between candidate documents. Meanwhile, the utilization of the multidimensional AFS acquires semantic descriptions of candidate documents more concise and flexible. The similarity degree between paragraphs is calculated according to the AFS description to generate the graph. Interpretable chains of reasoning provided by the AFS knowledge graph (AFS Graph) will serve as the basis for the answer prediction. Compared with the previous methods, the AFS Graph model presented in this article improves interpretability and reasoning ability. Experimental results show that the proposed model can achieve the state-of-the-art performance on datasets of HotpotQA, SQuAD, and Natural Questions Open.

18.
DNA Cell Biol ; 42(11): 680-688, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37815547

RESUMO

Cerebral dopamine neurotrophic factor (CDNF) is a unique neurotrophic factor (NTF) that has shown significant neuroprotective and neurorestorative functions on midbrain dopaminergic neurons. The secondary structure of human CDNF protein contains eight α-helices. We previously found that two key helices, α1 and α7, regulated the intracellular trafficking and secretion of CDNF protein in different manners. The α1 mutation (M1) induced most CDNF proteins to reside in the endoplasmic reticulum and little be secreted extracellularly, while the α7 mutation (M7) caused the majority of CDNF proteins to be secreted out of the cells and little reside in the cells. However, the regulation of the two mutants on the function of CDNF remains unclear. In this study, we investigated the effects of M1 and M7 on the protective activity of CDNF in PC12 cells, which were treated with 6-hydroxydopamine (6-OHDA) to mimic Parkinson's disease. We found that both M1 and M7 could promote survival and inhibit apoptosis more effectively than Wt in 6-OHDA-lesioned PC12 cells. Therefore, these findings will advance our understanding of the important regulation of subdomains on the function of NTFs.


Assuntos
Dopamina , Doença de Parkinson , Ratos , Animais , Humanos , Oxidopamina/toxicidade , Células PC12 , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/farmacologia , Fatores de Crescimento Neural/metabolismo , Doença de Parkinson/genética
19.
Front Microbiol ; 14: 1188229, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37389339

RESUMO

Introduction: Microbes play key roles in maintaining soil ecological functions. Petroleum hydrocarbon contamination is expected to affect microbial ecological characteristics and the ecological services they provide. In this study, the multifunctionalities of contaminated and uncontaminated soils in an aged petroleum hydrocarbon-contaminated field and their correlation with soil microbial characteristics were analyzed to explore the effect of petroleum hydrocarbons on soil microbes. Methods: Soil physicochemical parameters were determined to calculate soil multifunctionalities. In addition, 16S high-throughput sequencing technology and bioinformation analysis were used to explore microbial characteristics. Results: The results indicated that high concentrations of petroleum hydrocarbons (565-3,613 mg•kg-1, high contamination) reduced soil multifunctionality, while low concentrations of petroleum hydrocarbons (13-408 mg•kg-1, light contamination) might increase soil multifunctionality. In addition, light petroleum hydrocarbon contamination increased the richness and evenness of microbial community (p < 0.01), enhanced the microbial interactions and widened the niche breadth of keystone genus, while high petroleum hydrocarbon contamination reduced the richness of the microbial community (p < 0.05), simplified the microbial co-occurrence network, and increased the niche overlap of keystone genus. Conclusion: Our study demonstrates that light petroleum hydrocarbon contamination has a certain improvement effect on soil multifunctionalities and microbial characteristics. While high contamination shows an inhibitory effect on soil multifunctionalities and microbial characteristics, which has significance for the protection and management of petroleum hydrocarbon-contaminated soil.

20.
J Cardiovasc Transl Res ; 16(5): 999-1009, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37126209

RESUMO

It has been shown that SGLT2 suppresses atherosclerosis (AS). Recent studies indicate that autophagy widely participates in atherogenesis. This study aimed to assess the effect of canagliflozin (CAN) on atherogenesis via autophagy. Macrophages and ApoE - / - mice were used in this study. In macrophages, the results showed that CAN promoted LC3II expression and autophagosome formation. Furthermore, the cholesterol efflux assay demonstrated that CAN enhanced cholesterol efflux from macrophages via autophagy, resulting in lower lipid droplet concentrations in macrophages. The western blot revealed that CAN regulated autophagy via the AMPK/ULK1/Beclin1 signaling pathway. CAN resulted in increased macrophage autophagy in atherosclerotic plaques of ApoE - / - mice, confirming that CAN could inhibit the progression of AS via promoting macrophage autophagy. The current study found that CAN reduced the production of atherosclerotic lesions, which adds to our understanding of how SGLT2 inhibitors function to delay the progression of AS.


Assuntos
Aterosclerose , Placa Aterosclerótica , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Camundongos , Canagliflozina/farmacologia , Canagliflozina/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Macrófagos/metabolismo , Placa Aterosclerótica/patologia , Colesterol , Autofagia , Apolipoproteínas E/metabolismo , Apolipoproteínas E/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA