Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Nature ; 626(7997): 38-39, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297168
2.
Mol Cancer ; 20(1): 9, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407516

RESUMO

BACKGROUND: MicroRNAs (miRNAs) show considerable promise as therapeutic agents to improve tumor treatment, as they have been revealed as crucial modulators in tumor progression. However, our understanding of their roles in gastric carcinoma (GC) metastasis is limited. Here, we aimed to identify novel miRNAs involved in GC metastasis and explored their regulatory mechanisms and therapeutic significance in GC. METHODS: The microRNA expression profiles of GC tumors at different stages and at different metastasis statuses were compared respectively using the stomach adenocarcinoma (STAD) miRNASeq dataset in TCGA. Using the above method, miR-4521 was picked out for further study. miR-4521 expression in GC tissues was examined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and in situ hybridization (ISH). Highly and lowly invasive cell sublines were established using a repetitive transwell assay. Gain-of-function and loss-of-function analyses were performed to investigate the functions of miR-4521 and its upstream and downstream regulatory mechanisms in vitro and in vivo. Moreover, we investigated the therapeutic role of miR-4521 in a mouse xenograft model. RESULTS: In this study, we found that miR-4521 expression was downregulated in GC tissues compared with adjacent normal tissues and that its downregulation was positively correlated with advanced clinical stage, metastasis status and poor patient prognosis. Functional experiments revealed that miR-4521 inhibited GC cell invasion and metastasis in vitro and in vivo. Further studies showed that hypoxia repressed miR-4521 expression via inducing ETS1 and miR-4521 mitigated hypoxia-mediated metastasis, while miR-4521 inactivated the AKT/GSK3ß/Snai1 pathway by targeting IGF2 and FOXM1, thereby inhibiting the epithelial-mesenchymal transition (EMT) process and metastasis. In addition, we demonstrated that therapeutic delivery of synthetic miR-4521 suppressed gastric carcinoma progression in vivo. CONCLUSIONS: Our results suggest an important role for miR-4521 in regulating GC metastasis and hypoxic response of tumor cells as well as the therapeutic significance of this miRNA in GC.


Assuntos
Progressão da Doença , Regulação para Baixo/genética , Proteína Forkhead Box M1/genética , Fator de Crescimento Insulin-Like II/genética , MicroRNAs/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Animais , Sequência de Bases , Hipóxia Celular/genética , Linhagem Celular Tumoral , Proteína Forkhead Box M1/metabolismo , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Fator de Crescimento Insulin-Like II/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Invasividade Neoplásica , Metástase Neoplásica , Prognóstico , Proteína Proto-Oncogênica c-ets-1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fatores de Transcrição da Família Snail/metabolismo
3.
Exp Mol Pathol ; 105(1): 57-62, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29856982

RESUMO

Breast cancer is the most frequently diagnosed tumor type and the primary leading cause of cancer deaths in women worldwide. Drug resistance is the major obstacle for breast cancer treatment improvement. TRAIL-inducing compound 10 (Tic10), a novel activator of FOXO3, exhibits potent antitumor efficacy both in vitro and in vivo. In the present study, we investigated the resistance reversal effect of Tic10 on multidrug-resistant breast cancer cells T47D/5Fu derived from T47D breast cancer cells. We found that FOXO3a was significantly decreased in T47D/5-Fu cells, whereas treatment of Tic10 enhances FOXO3a expression and nuclear translocation. Moreover, treatment of Tic10 could reverses 5-Fluorouracil resistance of T47D/5-Fu cells via induction of G0/G1 cell cycle arrest and apoptosis. Furthermore, we found that Tic10 decreased the expression of CDK4 via FOXO3a-dependment mechanism. In addition, our data showed that Tic10 could sensitize drug resistant T47D/5-Fu cells to 5-Fu in vivo. Taken together, these data suggested Tic10 as capable of restoring sensitivity for drug-resistant breast cancer cells.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/farmacologia , Proteína Forkhead Box O3/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Neoplasias Mamárias Experimentais/metabolismo , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Feminino , Fluoruracila/uso terapêutico , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Humanos , Imidazóis , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Piridinas , Pirimidinas
4.
Mol Cancer ; 14: 84, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25890268

RESUMO

BACKGROUND: Chemoresistance is a major obstacle in successfully treating cancers, and the mechanisms responsible for drug resistance are still far from understood. Carbonic anhydrase 9 (CA9) has been shown to be upregulated in the drug-resistant tongue cancer cell line Tca8113/PYM and to be associated with drug resistance. However, the mechanisms regulating CA9 expression and its role in drug resistance remain unclear. METHODS: Bioinformatic and experimental analysis involving ChIP and luciferase reporter assays were used to validate Zinc finger E-box-binding homeobox 1 (ZEB1) as a transcriptional regulator of CA9. Gene expression and protein levels were evaluated by quantitative RT-PCR and western blotting, respectively. Sensitivity to chemotherapy was examined using the MTS assay and Hoechst staining and analysis caspase-3 activity to evaluate changes in apoptosis. Intracellular pH (pHi) was measured using fluorescent pH-indicator BCECF-AM. Protein expression in patient tissue samples was examined by immunohistochemistry and survival of tongue cancer patients from which these samples were derived was also analyzed. RESULTS: ZEB1 bound to the promoter of CA9 to positively regulate CA9 expression in tongue cancer cells. Knockdown of CA9 using short interfering RNA (siRNA) abolished the chemoresistance resulting from ZEB1 overexpression in Tca8113 and SCC-25 cells, and CA9 overexpression attenuated chemosensitivity induced by ZEB1 knockdown in Tca8113/PYM cells. CA9 knockdown also prevented maintenance of pHi mediated by overexpression of ZEB1 in Tca8113 and SCC-25 cells following chemotherapy, associated with increased apoptosis and caspase-3 activation. Conversely, ectopic expression of CA9 suppressed decrease in pHi mediated by ZEB1 knockdown in Tca8113/PYM cells following chemotherapy, accompanied by decreased apoptosis and caspase-3 activation. Importantly, a positive correlation was observed between ZEB1 and CA9 protein expression in tongue cancer tissues, and expression of these proteins associated with a poor prognosis for patients. CONCLUSION: Our finding that tumor cells regulate pHi in response to chemotherapy provides new insights into mechanisms of drug resistance during cancer treatment. Identification of the ZEB1-CA9 signaling axis as a biomarker of poor prognosis in tongue cancer will be valuable in future development of therapeutic strategies aimed at improving treatment efficacy, especially in terms of drug resistance associated with this disease.


Assuntos
Antígenos de Neoplasias/genética , Anidrases Carbônicas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Homeodomínio/genética , Neoplasias da Língua/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética , Apoptose/genética , Anidrase Carbônica IX , Caspase 3/genética , Linhagem Celular , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , RNA Interferente Pequeno/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco
5.
Nano Lett ; 13(3): 975-9, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23368645

RESUMO

We demonstrate a high-throughput method for synthesizing zinc selenide (ZnSe) in situ during fiber drawing. Central to this method is a thermally activated chemical reaction occurring across multiple interfaces between alternately layered elemental zinc- (Zn-) and selenium- (Se-) rich films embedded in a preform and drawn into meters of fiber at a temperature well below the melting temperature of either Zn or ZnSe. By depositing 50 nm thick layers of Zn interleaved between 1 µm thick Se layers, a controlled breakup of the Zn sheet is achieved, thereby enabling a complete and controlled chemical reaction. The thermodynamics and kinetics of this synthesis process are studied using thermogravimetric analysis and differential scanning calorimetry, and the in-fiber compound is analyzed by a multiplicity of materials characterization tools, including transmission electron microscopy, Raman microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction, all resulting in unambiguous identification of ZnSe as the compound produced from the reactive fiber draw. Furthermore, we characterize the in-fiber ZnSe/Se97S3 heterojunction to demonstrate the prospect of ZnSe-based fiber optoelectronic devices. The ability to synthesize new compounds during fiber drawing at nanometer scale precision and to characterize them at the atomic-level extends the architecture and materials selection compatible with multimaterial fiber drawing, thus paving the way toward more complex and sophisticated functionality.

6.
Nat Commun ; 15(1): 1686, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402238

RESUMO

Understanding the neural basis of behavior requires monitoring and manipulating combinations of physiological elements and their interactions in behaving animals. We developed a thermal tapering process enabling fabrication of low-cost, flexible probes combining ultrafine features: dense electrodes, optical waveguides, and microfluidic channels. Furthermore, we developed a semi-automated backend connection allowing scalable assembly. We demonstrate T-DOpE (Tapered Drug delivery, Optical stimulation, and Electrophysiology) probes achieve in single neuron-scale devices (1) high-fidelity electrophysiological recording (2) focal drug delivery and (3) optical stimulation. The device tip can be miniaturized (as small as 50 µm) to minimize tissue damage while the ~20 times larger backend allows for industrial-scale connectorization. T-DOpE probes implanted in mouse hippocampus revealed canonical neuronal activity at the level of local field potentials (LFP) and neural spiking. Taking advantage of the triple-functionality of these probes, we monitored LFP while manipulating cannabinoid receptors (CB1R; microfluidic agonist delivery) and CA1 neuronal activity (optogenetics). Focal infusion of CB1R agonist downregulated theta and sharp wave-ripple oscillations (SPW-Rs). Furthermore, we found that CB1R activation reduces sharp wave-ripples by impairing the innate SPW-R-generating ability of the CA1 circuit.


Assuntos
Canabinoides , Camundongos , Animais , Canabinoides/farmacologia , Hipocampo/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia
7.
Cell Rep Methods ; 4(3): 100738, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38508188

RESUMO

Spatially resolved epigenomic profiling is critical for understanding biology in the mammalian brain. Single-cell spatial epigenomic assays were developed recently for this purpose, but they remain costly and labor intensive for examining brain tissues across substantial dimensions and surveying a collection of brain samples. Here, we demonstrate an approach, epigenomic tomography, that maps spatial epigenomes of mouse brain at the scale of centimeters. We individually profiled neuronal and glial fractions of mouse neocortex slices with 0.5 mm thickness. Tri-methylation of histone 3 at lysine 27 (H3K27me3) or acetylation of histone 3 at lysine 27 (H3K27ac) features across these slices were grouped into clusters based on their spatial variation patterns to form epigenomic brain maps. As a proof of principle, our approach reveals striking dynamics in the frontal cortex due to kainic-acid-induced seizure, linked with transmembrane ion transporters, exocytosis of synaptic vesicles, and secretion of neurotransmitters. Epigenomic tomography provides a powerful and cost-effective tool for characterizing brain disorders based on the spatial epigenome.


Assuntos
Cromatina , Neocórtex , Camundongos , Animais , Histonas/genética , Epigenômica/métodos , Lisina , Neocórtex/metabolismo , Mamíferos/metabolismo
8.
Nano Lett ; 12(4): 1928-33, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22364382

RESUMO

We used scanning tunneling microscopy and spectroscopy (STM/S) techniques to analyze the relationships between the edge shapes and the electronic structures in as-grown chemical vapor deposition (CVD) graphene nanoribbons (GNRs). A rich variety of single-layered graphene nanoribbons exhibiting a width of several to 100 nm and up to 1 µm long were studied. High-resolution STM images highlight highly crystalline nanoribbon structures with well-defined and clean edges. Theoretical calculations indicate clear spin-split edge states induced by electron-electron Coulomb repulsion. The edge defects can significantly modify these edge states, and different edge structures for both sides of a single ribbon produce asymmetric electronic edge states, which reflect the more realistic features of CVD grown GNRs. Three structural models are proposed and analyzed to explain the observations. By comparing the models with an atomic resolution image at the edge, a pristine (2,1) structure was ruled out in favor of a reconstructed edge structure composed of 5-7 member rings, showing a better match with experimental results, and thereby suggesting the possibility of a defective morphology at the edge of CVD grown nanoribbons.

9.
Nano Lett ; 12(1): 161-6, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22111957

RESUMO

Hexagonal boron nitride (h-BN) is very attractive for many applications, particularly, as protective coating, dielectric layer/substrate, transparent membrane, or deep ultraviolet emitter. In this work, we carried out a detailed investigation of h-BN synthesis on Cu substrate using chemical vapor deposition (CVD) with two heating zones under low pressure (LP). Previous atmospheric pressure (AP) CVD syntheses were only able to obtain few layer h-BN without a good control on the number of layers. In contrast, under LPCVD growth, monolayer h-BN was synthesized and time-dependent growth was investigated. It was also observed that the morphology of the Cu surface affects the location and density of the h-BN nucleation. Ammonia borane is used as a BN precursor, which is easily accessible and more stable under ambient conditions than borazine. The h-BN films are characterized by atomic force microscopy, transmission electron microscopy, and electron energy loss spectroscopy analyses. Our results suggest that the growth here occurs via surface-mediated growth, which is similar to graphene growth on Cu under low pressure. These atomically thin layers are particularly attractive for use as atomic membranes or dielectric layers/substrates for graphene devices.


Assuntos
Compostos de Boro/química , Cobre/química , Cristalização/métodos , Membranas Artificiais , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Gases/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
10.
bioRxiv ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333172

RESUMO

Understanding the neural basis of behavior requires monitoring and manipulating combinations of physiological elements and their interactions in behaving animals. Here we developed a thermal tapering process (TTP) which enables the fabrication of novel, low-cost, flexible probes that combine ultrafine features of dense electrodes, optical waveguides, and microfluidic channels. Furthermore, we developed a semi-automated backend connection allowing scalable assembly of the probes. We demonstrate that our T-DOpE ( T apered D rug delivery, Op tical stimulation, and E lectrophysiology) probe achieves in a single neuron-scale device (1) high-fidelity electrophysiological recording (2) focal drug delivery and (3) optical stimulation. With a tapered geometry, the device tip can be minimized (as small as 50 µm) to ensure minimal tissue damage while the backend is ~20 times larger allowing for direct integration with industrial-scale connectorization. Acute and chronic implantation of the probes in mouse hippocampus CA1 revealed canonical neuronal activity at the level of local field potentials and spiking. Taking advantage of the triple-functionality of the T-DOpE probe, we monitored local field potentials with simultaneous manipulation of endogenous type 1 cannabinoid receptors (CB1R; via microfluidic agonist delivery) and CA1 pyramidal cell membrane potential (optogenetic activation). Electro-pharmacological experiments revealed that focal infusion of CB1R agonist CP-55,940 in dorsal CA1 downregulated theta and sharp wave-ripple oscillations. Furthermore, using the full electro-pharmacological-optical feature set of the T-DOpE probe we found that CB1R activation reduces sharp wave-ripples (SPW-Rs) by impairing the innate SPW-R-generating ability of the CA1 circuit.

11.
Artigo em Inglês | MEDLINE | ID: mdl-37905949

RESUMO

The Materials Genome Initiative (MGI) seeks to accelerate the discovery and engineering of advanced materials via high-throughput experimentation (HTE), which is a challenging task, given the common trade-off between design for optimal processability vs performance. Here, we report a HTE method based on automated formulation, synthesis, and multiproperty characterization of bulk soft materials in well plate formats that enables accelerated engineering of functional composite hydrogels with optimized properties for processability and performance. The method facilitates rapid high-throughput screening of hydrogel composition-property relations for multiple properties in well plate formats. The feasibility and utility of the method were demonstrated by application to several functional composite hydrogel systems, including alginate/poly(N-isopropylacrylamide) (PNIPAM) and poly(ethylene glycol) dimethacrylate (PEGDMA)/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) hydrogels. The HTE method was leveraged to identify formulations of conductive PEGDMA/PEDOT:PSS composite hydrogels for optimized performance and processability in three-dimensional (3D) printing. This work provides an advance in experimental methods based on automated dispensing, mixing, and sensing for the accelerated engineering of soft functional materials.

12.
ArXiv ; 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36713235

RESUMO

A bidirectional brain interface with both "write" and "read" functions can be an important tool for fundamental studies and potential clinical treatments for neurological diseases. Here we report a miniaturized multifunctional fiber based optoacoustic emitter (mFOE) that first integrates simultaneous non-genetic optoacoustic stimulation for "write" and electrophysiology recording of neural circuits for "read". The non-genetic feature addresses the challenges of the viral transfection required by optogenetics in primates and human. The orthogonality between optoacoustic waves and electrical field provides a solution to avoid the interference between electrical stimulation and recording. We first validated the non-genetic stimulation function of the mFOE in rat cultured neurons using calcium imaging. In vivo application of mFOE for successful simultaneous optoacoustic stimulation and electrical recording of brain activities was confirmed in mouse hippocampus in both acute and chronical applications up to 1 month. Minimal brain tissue damage has been confirmed after these applications. The capability of non-genetic neural stimulation and recording enabled by mFOE opens up new possibilities for the investigation of neural circuits and brings new insights into the study of ultrasound neurostimulation.

13.
Adv Healthc Mater ; 12(25): e2300430, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451259

RESUMO

A bidirectional brain interface with both "write" and "read" functions can be an important tool for fundamental studies and potential clinical treatments for neurological diseases. Herein, a miniaturized multifunctional fiber-based optoacoustic emitter (mFOE) is reported thatintegrates simultaneous optoacoustic stimulation for "write" and electrophysiology recording of neural circuits for "read". Because of the intrinsic ability of neurons to respond to acoustic wave, there is no requirement of the viral transfection. The orthogonality between optoacoustic waves and electrical field provides a solution to avoid the interference between electrical stimulation and recording. The stimulation function of the mFOE is first validated in cultured ratcortical neurons using calcium imaging. In vivo application of mFOE for successful simultaneous optoacoustic stimulation and electrical recording of brain activities is confirmed in mouse hippocampus in both acute and chronical applications up to 1 month. Minor brain tissue damage is confirmed after these applications. The capability of simultaneous neural stimulation and recording enabled by mFOE opens up new possibilities for the investigation of neural circuits and brings new insights into the study of ultrasound neurostimulation.


Assuntos
Encéfalo , Neurônios , Camundongos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Neurônios/fisiologia , Estimulação Elétrica , Cálcio , Fenômenos Eletrofisiológicos
14.
bioRxiv ; 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36778450

RESUMO

Small-scale robots capable of remote active steering and navigation offer great potential for biomedical applications. However, the current design and manufacturing procedure impede their miniaturization and integration of various diagnostic and therapeutic functionalities. Here, we present a robotic fiber platform for integrating navigation, sensing, and therapeutic functions at a submillimeter scale. These fiber robots consist of ferromagnetic, electrical, optical, and microfluidic components, fabricated with a thermal drawing process. Under magnetic actuation, they can navigate through complex and constrained environments, such as artificial vessels and brain phantoms. Moreover, we utilize Langendorff mouse hearts model, glioblastoma microplatforms, and in vivo mouse models to demonstrate the capabilities of sensing electrophysiology signals and performing localized treatment. Additionally, we demonstrate that the fiber robots can serve as endoscopes with embedded waveguides. These fiber robots provide a versatile platform for targeted multimodal detection and treatment at hard-to-reach locations in a minimally invasive and remotely controllable manner.

15.
Adv Healthc Mater ; 12(28): e2300964, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37473719

RESUMO

Small-scale robots capable of remote active steering and navigation offer great potential for biomedical applications. However, the current design and manufacturing procedure impede their miniaturization and integration of various diagnostic and therapeutic functionalities. Herein, submillimeter fiber robots that can integrate navigation, sensing, and modulation functions are presented. These fiber robots are fabricated through a scalable thermal drawing process at a speed of 4 meters per minute, which enables the integration of ferromagnetic, electrical, optical, and microfluidic composite with an overall diameter of as small as 250 µm and a length of as long as 150 m. The fiber tip deflection angle can reach up to 54o under a uniform magnetic field of 45 mT. These fiber robots can navigate through complex and constrained environments, such as artificial vessels and brain phantoms. Moreover, Langendorff mouse hearts model, glioblastoma micro platforms, and in vivo mouse models are utilized to demonstrate the capabilities of sensing electrophysiology signals and performing a localized treatment. Additionally, it is demonstrated that the fiber robots can serve as endoscopes with embedded waveguides. These fiber robots provide a versatile platform for targeted multimodal detection and treatment at hard-to-reach locations in a minimally invasive and remotely controllable manner.


Assuntos
Robótica , Animais , Camundongos , Robótica/métodos , Desenho de Equipamento , Miniaturização , Campos Magnéticos
16.
Clin Transl Med ; 13(1): e1166, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36639835

RESUMO

BACKGROUND: Tumour repopulation initiated by residual tumour cells in response to cytotoxic therapy has been described clinically and biologically, but the mechanisms are unclear. Here, we aimed to investigate the mechanisms for the tumour-promoting effect in dying cells and for tumour repopulation in surviving tongue cancer cells. METHODS: Tumour repopulation in vitro and in vivo was represented by luciferase activities. The differentially expressed cytokines in the conditioned medium (CM) were identified using a cytokine array. Gain or loss of function was investigated using inhibitors, neutralising antibodies, shRNAs and ectopic overexpression strategies. RESULTS: We found that dying tumour cells undergoing cytotoxic therapy increase the growth of living tongue cancer cells in vitro and in vivo. Dying tumour cells create amphiregulin (AREG)- and basic fibroblast growth factor (bFGF)-based extracellular environments via cytotoxic treatment-induced endoplasmic reticulum stress. This environment stimulates growth by activating lysine acetyltransferase 6B (KAT6B)-dependent nuclear factor-kappa B (NF-κB) signalling in living tumour cells. As direct targets of NF-κB, miR-22 targets KAT6B to repress its expression, but long noncoding RNAs (lncRNAs) (XLOC_003973 and XLOC_010383) counter the effect of miR-22 to enhance KAT6B expression. Moreover, we detected increased AREG and bFGF protein levels in the blood of tongue cancer patients with X-box binding protein-1 (XBP1) activation in tumours under cytotoxic therapy and found that XBP1 activation is associated with poor prognosis of patients. We also detected activation of miR-22/lncRNA/KAT6B/NF-κB signalling in recurrent cancers compared to paired primary tongue cancers. CONCLUSIONS: We identified the molecular mechanisms of cell death-induced tumour repopulation in tongue cancer. Such insights provide new avenues to identify predictive biomarkers and effective strategies to address cancer progression.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias da Língua , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , RNA Longo não Codificante/genética , Neoplasias da Língua/tratamento farmacológico , Neoplasias da Língua/genética , Recidiva Local de Neoplasia , Citocinas , MicroRNAs/genética , MicroRNAs/metabolismo , Histona Acetiltransferases , Proteína 1 de Ligação a X-Box/genética
17.
Fish Shellfish Immunol ; 32(2): 373-80, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22155278

RESUMO

The RNA interference (RNAi) is an evolutionarily conserved protective mechanism in eukaryotes against parasitic foreign nucleic acids. Previous studies demonstrated that the RNAi mechanism is important for shrimp antiviral immunity. Here, we report the identification and functional analysis of two key components of the shrimp RNAi activity: Litopenaeus vannamei arsenite resistance gene 2 (LvArs2) and partner of drosha (LvPasha). The full-length cDNA of LvArs2 was 3470 bp, including a 5' untranslated region (UTR) of 167 bp, a 3' UTR of 639 bp, and an open reading frame (ORF) of 2664 bp that encoded 887 amino acid residues with an estimated molecular mass of 102.5 kDa. The full-length cDNA of LvPasha was 2654 bp, including a 5' UTR of 99 bp, a 3' UTR of 560 bp, and an ORF of 1995 bp that encoded 664 amino acid residues with an estimated molecular mass of 74.2 kDa. Co-immunoprecipitation demonstrated that LvArs2 interacted with L. vannamei Dicer2 (LvDcr2) and LvPasha in Drosophila Schneider 2 (S2) cells, suggesting that LvArs2 may be involved in regulation of the miRNA/siRNA pathways in L.vannamei. Subcellular localization assays demonstrated both LvArs2 and LvPasha proteins mainly presented in the nucleus. After Poly(C-G) stimulation, the expression of LvArs2 was suppressed and expression of LvPasha was enhanced in shrimp gills. These results suggest that LvArs2 and LvPasha may participate in the defense against RNA viruses in crustacea.


Assuntos
DNA Complementar/genética , Proteínas Nucleares/genética , Penaeidae/genética , Penaeidae/imunologia , Interferência de RNA , Proteínas de Ligação a RNA/genética , Adjuvantes Imunológicos/farmacologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/imunologia , Penaeidae/classificação , Penaeidae/virologia , Filogenia , Poli C/farmacologia , Poli G/farmacologia , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/imunologia , Alinhamento de Sequência
18.
Sci Rep ; 12(1): 4134, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264660

RESUMO

Hollow fiber membranes are used in industrial processes widely. Porosity is one of the important parameters affecting the humidification performance of hollow fiber membrane components. The aim of this study was to analyze the effect of porosity of hollow fiber membrane on humidification performance. In order to perform this analysis, a model based on the finite element method was used to simulate numerically the heat and mass transfer under 6 porosity conditions. Five working conditions with different air flow was considered in order to get more data. The results show that when the porosity increases from 0.35 to 0.8, the humidification performance is greatly improved. However, when it increases from 0.8 to 0.9, the humidification performance is almost unchanged. Considering the humidification performance and support strength of hollow fiber membrane, it is suggested to control the porosity of hollow fiber membrane between 0.65 and 0.8.

19.
Adv Fiber Mater ; 4(4): 859-872, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37799114

RESUMO

Microscale electroporation devices are mostly restricted to in vitro experiments (i.e., microchannel and microcapillary). Novel fiber-based microprobes can enable in vivo microscale electroporation and arbitrarily select the cell groups of interest to electroporate. We developed a flexible, fiber-based microscale electroporation device through a thermal drawing process and femtosecond laser micromachining techniques. The fiber consists of four copper electrodes (80 µm), one microfluidic channel (30 µm), and has an overall diameter of 400 µm. The dimensions of the exposed electrodes and channel were customizable through a delicate femtosecond laser setup. The feasibility of the fiber probe was validated through numerical simulations and in vitro experiments. Successful reversible and irreversible microscale electroporation was observed in a 3D collagen scaffold (seeded with U251 human glioma cells) using fluorescent staining. The ablation regions were estimated by performing the covariance error ellipse method and compared with the numerical simulations. The computational and experimental results of the working fiber-based microprobe suggest the feasibility of in vivo microscale electroporation in space-sensitive areas, such as the deep brain.

20.
Oncogenesis ; 11(1): 19, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459265

RESUMO

Previously, our lab explored that tongue cancer resistance-associated protein (TCRP1) plays a central role in cancer chemo-resistance and progression. Absolutely, TCRP1 was significantly increased in lung cancer. But the mechanism is far from elucidated. Here, we found that TCRP1 was increased in p53-mutant non-small-cell lung cancer (NSCLC), comparing to that in NSCLC with wild type p53. Further study showed that mutant p53 couldn't bind to the promoter of TCRP1 to inhibit its expression. While the wild type p53 did so. Next, loss-and gain-of-function assays demonstrated that TCRP1 promoted cell proliferation and tumor growth in NSCLC. Regarding the mechanism, TCRP1 encouraged AKT phosphorylation and blocked FOXO3a nuclear localization through favoring FOXO3a ubiquitination in cytoplasm, thus, promoted cell cycle progression. Conclusionly, TCRP1 was upregulated in NSCLC cells with mutant p53. TCRP1 promoted NSCLC progression via regulating cell cycle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA