Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Bull (Beijing) ; 69(12): 1920-1935, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38423871

RESUMO

Diabetic retinopathy (DR) is the leading cause of blindness among the working-age population. Although controlling blood glucose levels effectively reduces the incidence and development of DR to less than 50%, there are currently no diagnostic biomarkers or effective treatments for DR development in glucose-well-controlled diabetic patients (GW-DR). In this study, we established a prospective GW-DR cohort by strictly adhering to glycemic control guidelines and maintaining regular retinal examinations over a median 2-year follow-up period. The discovery cohort encompassed 71 individuals selected from a pool of 292 recruited diabetic patients at baseline, all of whom consistently maintained hemoglobin A1c (HbA1c) levels below 7% without experiencing hypoglycemia. Within this cohort of 71 individuals, 21 subsequently experienced new-onset GW-DR, resulting in an incidence rate of 29.6%. In the validation cohort, we also observed a significant GW-DR incidence rate of 17.9%. Employing targeted metabolomics, we investigated the metabolic characteristics of serum in GW-DR, revealing a significant association between lower levels of ethanolamine and GW-DR risk. This association was corroborated in the validation cohort, exhibiting superior diagnostic performance in distinguishing GW-DR from diabetes compared to the conventional risk factor HbA1c, with AUCs of 0.954 versus 0.506 and 0.906 versus 0.521 in the discovery and validation cohorts, respectively. Furthermore, in a streptozotocin (STZ)-induced diabetic rat model, ethanolamine attenuated diabetic retinal inflammation, accompanied by suppression of microglial diacylglycerol (DAG)-dependent protein kinase C (PKC) pathway activation. In conclusion, we propose that ethanolamine is a potential biomarker and represents a viable biomarker-based therapeutic option for GW-DR.


Assuntos
Biomarcadores , Retinopatia Diabética , Etanolamina , Humanos , Retinopatia Diabética/sangue , Retinopatia Diabética/diagnóstico , Retinopatia Diabética/epidemiologia , Biomarcadores/sangue , Animais , Masculino , Feminino , Pessoa de Meia-Idade , Hemoglobinas Glicadas/análise , Hemoglobinas Glicadas/metabolismo , Ratos , Glicemia/metabolismo , Glicemia/análise , Estudos Prospectivos , Diabetes Mellitus Experimental/sangue , Idoso , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Controle Glicêmico/métodos
2.
Front Endocrinol (Lausanne) ; 14: 1151757, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600696

RESUMO

Background: Thyroid eye disease (TED) is the most frequent orbital disease in adults and is characterized by the accumulation of orbital adipose tissue (OAT). It can lead to eyelid retraction or even vision loss. Orbital decompression surgery serves as the primary treatment for inactive TED by removing the excess OAT. However, there is a lack of alternative treatments to surgery due to the unclear understanding of the pathogenesis, particularly the metabolic features. Accordingly, our study was implemented to explore the content and features of metabolites of OATs from TED patients. Method: The OATs used in the current study were obtained from the orbital decompression surgery of seven patients with inactive TED. We also collected control OATs from eye surgical samples of five individuals with no history of autoimmune thyroid diseases, TED, or under non-inflammatory conditions. The liquid chromatography mass spectrometer was used for the measurements of the targeted metabolites. Afterwards, we performed differential metabolite assay analysis and related pathway enrichment analysis. Results: In our study, a total of 149 metabolite profiles were detected in all participants. There were significant differences in several metabolite profiles between the TED group and the control group, mainly including uric acid, oxidized glutathione, taurine, dGMP, oxidized glutathione 2, uracil, hexose-phosphate, 1-methylnicotinamide, D-sedoheptulose 1,7-bisphosphate, and uridine 5'-monophosphate (all p-value < 0.05). The TED-related pathways identified included purine metabolism, beta-alanine metabolism, glutathione metabolism (p-values < 0.05). Our study found overlaps and differences including uric acid and uracil, which are in accordance with metabolites found in blood of patients with TED from previous study and several newly discovered metabolite by our study such as hexose-phosphate, 1-methylnicotinamide, D-sedoheptulose 1,7-bisphosphate, compared to those tested from blood, OAT, or urine samples reported in previous studies. Conclusion: The findings of our study shed light on the metabolic features of OAT in individuals with TED. These results may help identify new treatment targets for TED, providing potential avenues for developing alternative treatments beyond ophthalmic surgery.


Assuntos
Oftalmopatia de Graves , Adulto , Humanos , Oftalmopatia de Graves/cirurgia , Dissulfeto de Glutationa , Ácido Úrico , Tecido Adiposo , Bioensaio
3.
Cells ; 11(19)2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36230967

RESUMO

Diabetic retinopathy (DR), the leading cause of blindness in working-age adults, is one of the most common complications of diabetes mellitus (DM) featured by metabolic disorders. With the global prevalence of diabetes, the incidence of DR is expected to increase. Prompt detection and the targeting of anti-oxidative stress intervention could effectively reduce visual impairment caused by DR. However, the diagnosis and treatment of DR is often delayed due to the absence of obvious signs of retina imaging. Research progress supports that metabolomics is a powerful tool to discover potential diagnostic biomarkers and therapeutic targets for the causes of oxidative stress through profiling metabolites in diseases, which provides great opportunities for DR with metabolic heterogeneity. Thus, this review summarizes the latest advances in metabolomics in DR, as well as potential diagnostic biomarkers, and predicts molecular targets through the integration of genome-wide association studies (GWAS) with metabolomics. Metabolomics provides potential biomarkers, molecular targets and therapeutic strategies for controlling the progress of DR, especially the interventions at early stages and precise treatments based on individual patient variations.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Adulto , Biomarcadores/metabolismo , Retinopatia Diabética/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Metabolômica , Estresse Oxidativo
4.
Metabolites ; 12(12)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36557283

RESUMO

Diabetic retinopathy (DR), as the leading cause of vision loss in the working-age population, exhibits unique metabolite profiles in human plasma and vitreous. However, those in retina are not fully understood. Here, we utilized liquid and gas chromatography-tandem mass spectrometry technology to explore metabolite characteristics of streptozotocin (STZ)-induced diabetic mice retina. A total of 145 metabolites differed significantly in diabetic retinas compared with controls. These metabolites are mainly enriched in the Warburg effect, and valine, leucine and isoleucine degradation pathways. To further identify underlying regulators, RNA sequencing was performed to integrate metabolic enzyme alterations with metabolomics in STZ-induced diabetic retina. Retinol metabolism and tryptophan metabolism are the shared pathways enriched by metabolome and transcriptome. Additionally, transcriptomic analysis identified 71 differentially expressed enzyme-related genes including Hk2, Slc7a5, Aldh1a3 and Tph integrated with altered metabolic pathways. In addition, single nucleotide polymorphisms within 6 out of 71 genes are associated with increased diabetes risk. This study lays the foundation for mechanism research and the therapeutic target development of DR.

5.
Front Immunol ; 13: 942768, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119084

RESUMO

Diabetic retinopathy (DR) is the leading cause of visual impairment and blindness among working-age people. Inflammation is recognized as a critical driver of the DR process. However, the main retina-specific cell type producing pro-inflammatory cytokines and its mechanism underlying DR are still unclear. Here, we used single-cell sequencing to identify microglia with metabolic pathway alterations that were the main source of IL-1ß in STZ-induced DR mice. To profile the full extent of local metabolic shifts in activated microglia and to reveal the metabolic microenvironment contributing to immune mechanisms, we performed integrated metabolomics, lipidomics, and RNA profiling analyses in microglia cell line samples representative of the DR microenvironment. The results showed that activated microglia with IL-1ß increase exhibited a metabolic bias favoring glycolysis, purine metabolism, and triacylglycerol synthesis, but less Tricarboxylic acid (TCA). In addition, some of these especially glycolysis was necessary to facilitate their pro-inflammation. These findings suggest that activated microglia with intracellular metabolic reprogramming in retina may contribute to pro-inflammation in the early DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Animais , Citocinas/metabolismo , Diabetes Mellitus/metabolismo , Humanos , Inflamação/metabolismo , Camundongos , Microglia/metabolismo , Purinas/metabolismo , RNA/metabolismo , Retina/metabolismo , Ácidos Tricarboxílicos/metabolismo , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA