Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 370: 122542, 2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39312876

RESUMO

Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are emerging contaminants that widely exist in the environment. Effective reduction of ARB and ARGs from soil and water could be achieved by electrokinetic remediation (EKR) technology. In water, hydroxyl radicals (·OH) are proved to play a major role in the EKR process; while the reduction mechanism of ARB and ARGs is still unclear in soil. In this study, different concentrations of hydroxyl radical scavengers (salicylic acid) were added to the EKR system to explore the possible role of ·OH in the reduction of ARB and ARGs. The results showed that generally, ·OH played a more vital role in the reduction of ARB (65.24-72.46%) compared to the reduction of total cultivable bacteria (57.50%). And ·OH contributed to a higher reduction of sul genes (60.94%) compared to tet genes (47.71%) and integrons (36.02%). It was found that the abundance of Gram-negative bacteria (Chloroflexi, Acidobacteria and norank_c_Acidobacteria) was significantly reduced, and the correlation between norank_f_Gemmatimonadaceae and sul1 was weakened in the presence of ·OH. Correlation analysis indicated that the abundance of ARGs (especially sul1) was closely related to the Gram-negative bacteria (Proteobacteria, Acidobacteria, and Gemmatimonadetes) in the soil EKR treatment. Moreover, changes in bacterial community structure affected the abundance of ARB and ARGs indirectly. Overall, this study revealed the reduction mechanism of ARB and ARGs by ·OH in the soil EKR system for the first time. These findings provide valuable support for soil remediation efforts focusing on controlling antibiotic resistance.

2.
Appl Opt ; 62(11): 2800-2808, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37133121

RESUMO

A method of efficient directional optical manipulation of nanoparticles based on a laser photothermal trap is proposed, and the influence mechanism of external conditions on the photothermal trap is clarified. Through optical manipulation experiments and finite-element simulations, it is determined that the main cause of gold nanoparticle directional motion depends on the drag force. The laser power, boundary temperature, and thermal conductivity of the substrate at the bottom of the solution and liquid level essentially affect the intensity of the laser photothermal trap in the solution and then affect the directional movement and deposition speed of gold particles. The result shows the origin of the laser photothermal trap and the three-dimensional spatial velocity distribution of gold particles. It also clarifies the height boundary of photothermal effect onset, which clarifies the boundary between light force and photothermal effect. In addition, nanoplastics are manipulated successfully based on this theoretical study. In this study, the movement law of gold nanoparticles based on the photothermal effect is deeply analyzed through experiments and simulations, which is of significance to the theoretical study of the optical manipulation of nanoparticles using the photothermal effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA