Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 619(7969): 357-362, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37286606

RESUMO

Physicians make critical time-constrained decisions every day. Clinical predictive models can help physicians and administrators make decisions by forecasting clinical and operational events. Existing structured data-based clinical predictive models have limited use in everyday practice owing to complexity in data processing, as well as model development and deployment1-3. Here we show that unstructured clinical notes from the electronic health record can enable the training of clinical language models, which can be used as all-purpose clinical predictive engines with low-resistance development and deployment. Our approach leverages recent advances in natural language processing4,5 to train a large language model for medical language (NYUTron) and subsequently fine-tune it across a wide range of clinical and operational predictive tasks. We evaluated our approach within our health system for five such tasks: 30-day all-cause readmission prediction, in-hospital mortality prediction, comorbidity index prediction, length of stay prediction, and insurance denial prediction. We show that NYUTron has an area under the curve (AUC) of 78.7-94.9%, with an improvement of 5.36-14.7% in the AUC compared with traditional models. We additionally demonstrate the benefits of pretraining with clinical text, the potential for increasing generalizability to different sites through fine-tuning and the full deployment of our system in a prospective, single-arm trial. These results show the potential for using clinical language models in medicine to read alongside physicians and provide guidance at the point of care.


Assuntos
Tomada de Decisão Clínica , Registros Eletrônicos de Saúde , Processamento de Linguagem Natural , Médicos , Humanos , Tomada de Decisão Clínica/métodos , Readmissão do Paciente , Mortalidade Hospitalar , Comorbidade , Tempo de Internação , Cobertura do Seguro , Área Sob a Curva , Sistemas Automatizados de Assistência Junto ao Leito/tendências , Ensaios Clínicos como Assunto
2.
Nat Commun ; 15(1): 8170, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289405

RESUMO

The detection and tracking of metastatic cancer over the lifetime of a patient remains a major challenge in clinical trials and real-world care. Advances in deep learning combined with massive datasets may enable the development of tools that can address this challenge. We present NYUMets-Brain, the world's largest, longitudinal, real-world dataset of cancer consisting of the imaging, clinical follow-up, and medical management of 1,429 patients. Using this dataset we developed Segmentation-Through-Time, a deep neural network which explicitly utilizes the longitudinal structure of the data and obtained state-of-the-art results at small (<10 mm3) metastases detection and segmentation. We also demonstrate that the monthly rate of change of brain metastases over time are strongly predictive of overall survival (HR 1.27, 95%CI 1.18-1.38). We are releasing the dataset, codebase, and model weights for other cancer researchers to build upon these results and to serve as a public benchmark.


Assuntos
Benchmarking , Neoplasias Encefálicas , Aprendizado Profundo , Redes Neurais de Computação , Humanos , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/diagnóstico por imagem , Estudos Longitudinais , Masculino , Feminino , Pessoa de Meia-Idade , Idoso
3.
Neurosurgery ; 92(2): 431-438, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36399428

RESUMO

BACKGROUND: The development of accurate machine learning algorithms requires sufficient quantities of diverse data. This poses a challenge in health care because of the sensitive and siloed nature of biomedical information. Decentralized algorithms through federated learning (FL) avoid data aggregation by instead distributing algorithms to the data before centrally updating one global model. OBJECTIVE: To establish a multicenter collaboration and assess the feasibility of using FL to train machine learning models for intracranial hemorrhage (ICH) detection without sharing data between sites. METHODS: Five neurosurgery departments across the United States collaborated to establish a federated network and train a convolutional neural network to detect ICH on computed tomography scans. The global FL model was benchmarked against a standard, centrally trained model using a held-out data set and was compared against locally trained models using site data. RESULTS: A federated network of practicing neurosurgeon scientists was successfully initiated to train a model for predicting ICH. The FL model achieved an area under the ROC curve of 0.9487 (95% CI 0.9471-0.9503) when predicting all subtypes of ICH compared with a benchmark (non-FL) area under the ROC curve of 0.9753 (95% CI 0.9742-0.9764), although performance varied by subtype. The FL model consistently achieved top three performance when validated on any site's data, suggesting improved generalizability. A qualitative survey described the experience of participants in the federated network. CONCLUSION: This study demonstrates the feasibility of implementing a federated network for multi-institutional collaboration among clinicians and using FL to conduct machine learning research, thereby opening a new paradigm for neurosurgical collaboration.


Assuntos
Algoritmos , Benchmarking , Humanos , Hemorragias Intracranianas , Aprendizado de Máquina , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA