RESUMO
Ionizing radiation-induced intestinal injury is a catastrophic complication in patients receiving radiotherapy. Circulating exosomes from patients undergoing radiotherapy can mediate communication between cells and facilitate a variety of pathological processes in vivo, but its effects on ionizing radiation-induced intestinal damage are undetermined. In this study we investigated the roles of exosomes during total body irradiation (TBI)-induced intestinal injury in vivo and in vitro. We isolated exosomes from serum of donor mice 24 h after lethal dose (9 Gy) TBI (Exo-IR-24h), then intravenously injected the exosomes into receipt mice, and found that Exo-IR-24h injection not only exacerbated 9 Gy TBI-induced lethality and weight loss, but also promoted crypt-villus structural and functional injury of the small intestine in receipt mice. Moreover, Exo-IR-24h injection significantly enhanced the apoptosis and DNA damage of small intestine in receipt mice following TBI exposure. In murine intestinal epithelial MODE-K cells, treatment with Exo-IR-24h significantly promoted 4 Gy ionizing radiation-induced apoptosis, resulting in decreased cell vitality. We further demonstrated that Exo-IR-24h promoted the IR-induced injury in receipt mice partially through its DNA damage-promoting effects and attenuating Nrf2 antioxidant response in irradiated MODE-K cells. In addition, TBI-related miRNAs and their targets in the exosomes of mice were enriched functionally using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Finally, injection of GW4869 (an inhibitor of exosome biogenesis and release, 1.25 mg·kg-1·d-1, ip, for 5 consecutive days starting 3 days before radiation exposure) was able to rescue mice against 9 Gy TBI-induced lethality and intestinal damage. Collectively, this study reveals that exosomes are involved in TBI-induced intestinal injury in mice and provides a new target to protect patients against irradiation-induced intestinal injury during radiotherapy.
Assuntos
Exossomos/metabolismo , Enteropatias/metabolismo , Mucosa Intestinal/metabolismo , Animais , Apoptose/fisiologia , Proliferação de Células/fisiologia , Dano ao DNA/fisiologia , Raios gama , Enteropatias/patologia , Mucosa Intestinal/patologia , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Masculino , Camundongos Endogâmicos BALB C , MicroRNAs/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Lesões Experimentais por Radiação , Irradiação Corporal TotalRESUMO
INTRODUCTION: Radioresistance is a major challenge in lung cancer radiotherapy, and new radiosensitizers are urgently needed. Estrogen receptor ß (ERß) is involved in the progression of non-small cell lung cancer (NSCLC), however, the role of ERß in the response to radiotherapy in lung cancer remains elusive. In the present study, we investigated the mechanism underlying ERß-mediated transcriptional activation and radioresistance of NSCLC cells. METHODS: Quantitative real-time PCR, western blot and immunohistochemistry were used to detect the expression of CLPTM1L, ERß and other target genes. The mechanism of CLPTM1L in modulation of radiosensitivity was investigated by chromatin immunoprecipitation assay, luciferase reporter gene assay, immunofluorescence staining, confocal microscopy, coimmunoprecipitation and GST pull-down assays. The functional role of CLPTM1L was detected by function assays in vitro and in vivo. RESULTS: CLPTM1L expression was negatively correlated with the radiosensitivity of NSCLC cell lines, and irradiation upregulated CLPTM1L in radioresistant (A549) but not in radiosensitive (H460) NSCLC cells. Meanwhile, IR induced the translocation of CLPTM1L from the cytoplasm into the nucleus in NSCLC cells. Moreover, CLPTM1L induced radioresistance in NSCLC cells. iTRAQ-based analysis and cDNA microarray identified irradiation-related genes commonly targeted by CLPTM1L and ERß, and CLPTM1L upregulated ERß-induced genes CDC25A, c-Jun, and BCL2. Mechanistically, CLPTM1L coactivated ERß by directly interacting with ERß through the LXXLL NR (nuclear receptor)-binding motif. Functionally, ERß silencing was sufficient to block CLPTM1L-enhanced radioresistance of NSCLC cells in vitro. CLPTM1L shRNA treatment in combination with irradiation significantly inhibited cancer cell growth in NSCLC xenograft tumors in vivo. CONCLUSIONS: The present results indicate that CLPTM1L acts as a critical coactivator of ERß to promote the transcription of its target genes and induce radioresistance of NSCLC cells, suggesting a new target for radiosensitization in NSCLC therapy. Video Abstract.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Receptor beta de Estrogênio/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/radioterapia , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Apoptose/efeitos da radiação , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Receptor beta de Estrogênio/genética , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Neoplasias Pulmonares/genética , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Tolerância a Radiação , Transdução de Sinais/efeitos da radiaçãoRESUMO
Radioresistance is a major challenge in lung cancer radiotherapy (RT), and consequently, new radiosensitizers are urgently needed. MicroRNAs (miRNAs) have been demonstrated to participate in many important cellular processes including radiosensitization. MiR-365 is dysregulated in non-small cell lung cancer (NSCLC) and is able to restrain the development of NSCLC. However, the relationship between miR-365 and radiosensitivities of NSCLC cells remains largely unknown. Here we reveal that overexpression of miR-365 is able to enhance the radiosensitivity of NSCLC cells through targeting CDC25A. We found that the expression level of miR-365 was positively correlated with the radiosensitivity of NSCLC cell lines. Furthermore, our results showed that overexpression of miR-365 could sensitize A549â¯cells to the irradiation. However, knockdown of miR-365 in H460â¯cells could act the converse manner. Mechanically, miR-365 was able to directly target 3'UTR of cell division cycle 25A (CDC25A) mRNA and reduce the expression of CDC25A at the levels of mRNA and protein. And we confirmed that miR-365 could increase the radiosensitivity of NSCLC cells by targeting CDC25A using in vitro and in vivo assays. Taken together, restoration of miR-365 expression enhances the radiosensitivity of NSCLC cells by suppressing CDC25A, and miR-365 could be used as a radiosensitizer for NSCLC therapy.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , MicroRNAs/genética , Tolerância a Radiação/genética , Fosfatases cdc25/antagonistas & inibidores , Fosfatases cdc25/genética , Regiões 3' não Traduzidas , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/metabolismo , Radiossensibilizantes/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Fosfatases cdc25/metabolismoRESUMO
Radiation therapy toward malignancies is often ineffective owing to radioresistance of cancer cells. On the basis of anti-tumor properties of cordycepin, we examined the effects of cordycepin on sensitizing breast cancer cells toward radiotherapy. Cordycepin administration promoted G2/M arrest and apoptosis of MCF-7 and MDA-MB-231 cells resulting in restraining the proliferation of the cells in vitro and in vivo following irradiation. Mechanistic investigations showed that the breast cancer cells cultured with cordycepin harbored higher levels of intracellular reactive oxygen species (ROS) and incremental numbers of γ-H2AX foci after irradiation exposure. Importantly, cordycepin treatment down-regulated the expression levels of Nuclear factor erythroid 2-related factor (Nrf2) and a series of downstream genes, such as heme oxygenase-1 (HO-1), to enhance ROS in breast cancer cells exposed to irradiation. Together, our observations demonstrate that cordycepin treatment sensitizes breast carcinoma cells toward irradiation via Nrf2/HO-1/ROS axis. Thus, our findings provide novel insights into the function and the underlying mechanism of cordycepin in radiotherapy, and suggest that cordycepin might be employed as a radiosensitizer during radiotherapy toward breast cancer in a pre-clinical setting.
Assuntos
Neoplasias da Mama/radioterapia , Desoxiadenosinas/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Dano ao DNA , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Heme Oxigenase-1/metabolismo , Histonas/metabolismo , Humanos , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Regulação para Cima , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Irradiation exposure positive correlates with tumor formation, such as breast cancer and lung cancer. However, whether low dose irradiation induces hepatocarcinogenesis and the underlying mechanism remain poorly defined. In the present study, we reported that low dose irradiation facilitated the proliferation of hepatocyte through up-regulating HULC in vitro and in vivo. Low dose irradiation exposure elevated HULC expression level in hepatocyte. Deletion of heightened HULC erased the cells growth accelerated following low dose irradiation exposure. CDKN1, the neighbor gene of HULC, was down-regulated by overexpression of HULC following low dose irradiation exposure via complementary base pairing, resulting in promoting cell cycle process. Thus, our findings provide new insights into the mechanism of low dose irradiation-induced hepatocarcinogenesis through HULC/CDKN1 signaling, and shed light on the potential risk of low dose irradiation for the development of hepatocellular carcinoma in pre-clinical settings.
Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , RNA Longo não Codificante/genética , Animais , Carcinogênese/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica/genética , Células Hep G2 , Humanos , Camundongos , Camundongos Nus , Doses de Radiação , Regulação para Cima/genéticaRESUMO
Mammalian hepatitis B X-interacting protein (HBXIP) is an 18-kDa protein that regulates a large number of transcription factors such as TF-IID, E2F1, SP1, STAT3, c-Myc, and LXR by serving as an oncogenic transcription coactivator and plays an important role in the development of breast cancer. We previously showed that HBXIP as an oncoprotein could enhance the promoter activity of MDM2 through coactivating p53, promoting the MDM2 transcription in breast cancer. In this study we investigated the molecular mechanisms underlying the modulation of MDM2/p53 interaction by HBXIP in human breast cancer MCF-7 cells in vitro and in vivo. We showed that HBXIP could up-regulate MDM2 through inducing DNA methylation of miR-18b, thus suppressing the miR-18b expression, leading to the attenuation of p53 in breast cancer cells. In addition, HBXIP could promote the phosphorylation of MDM2 by increasing the level of pAKT and bind to pMDM2, subsequently enhancing the interaction between MDM2 and p53 for the down-regulation of p53 in breast cancer cells. In MCF-7 breast cancer xenograft nude mice, we also observed that overexpression of HBXIP promoted breast cancer growth through the miR-18b/MDM2 and pAKT/MDM2 pathways. In conclusion, oncoprotein HBXIP suppresses miR-18b to elevate MDM2 and activates pAKT to phosphorylate MDM2 for enhancing the interaction between MDM2 and p53, leading to p53 degradation in promotion of breast cancer growth. Our findings shed light on a novel mechanism of p53 down-regulation during the development of breast cancer.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/metabolismo , Proteínas Oncogênicas/metabolismo , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genética , Regulação para CimaRESUMO
Over the past decade, nanopore sequencing has experienced significant advancements and changes, transitioning from an initially emerging technology to a significant instrument in the field of genomic sequencing. However, as advancements in next-generation sequencing technology persist, nanopore sequencing also improves. This paper reviews the developments, applications, and outlook on nanopore sequencing technology. Currently, nanopore sequencing supports both DNA and RNA sequencing, making it widely applicable in areas such as telomere-to-telomere (T2T) genome assembly, direct RNA sequencing (DRS), and metagenomics. The openness and versatility of nanopore sequencing have established it as a preferred option for an increasing number of research teams, signaling a transformative influence on life science research. As nanopore sequencing technology advances, it provides a faster, more cost-effective approach with extended read lengths, demonstrating the significant potential for complex genome assembly, pathogen detection, environmental monitoring, and human disease research, offering a fresh perspective in sequencing technologies.
RESUMO
Ionizing radiation (IR) is associated with the occurrence of enteritis, and protecting the whole intestine from radiation-induced gut injury remains an unmet clinical need. Circulating extracellular vesicles (EVs) are proven to be vital factors in the establishment of tissue and cell microenvironments. In this study, we aimed to investigate a radioprotective strategy mediated by small EVs (exosomes) in the context of irradiation-induced intestinal injury. We found that exosomes derived from donor mice exposed to total body irradiation (TBI) could protect recipient mice against TBI-induced lethality and alleviate radiation-induced gastrointestinal (GI) tract toxicity. To enhance the protective effect of EVs, profilings of mouse and human exosomal microRNAs (miRNAs) were performed to identify the functional molecule in exosomes. We found that miRNA-142-5p was highly expressed in exosomes from both donor mice exposed to TBI and patients after radiotherapy (RT). Moreover, miR-142 protected intestinal epithelial cells from irradiation-induced apoptosis and death and mediated EV protection against radiation enteritis by ameliorating the intestinal microenvironment. Then, biomodification of EVs was accomplished via enhancing miR-142 expression and intestinal specificity of exosomes, and thus improved EV-mediated protection from radiation enteritis. Our findings provide an effective approach for protecting against GI syndrome in people exposed to irradiation.
Assuntos
Enterite , Exossomos , Vesículas Extracelulares , MicroRNAs , Humanos , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Exossomos/metabolismo , Enterite/metabolismoRESUMO
Fragaria vesca, commonly known as wild or woodland strawberry, is the most widely distributed diploid Fragaria species and is native to Europe and Asia. Because of its small plant size, low heterozygosity, and relative ease of genetic transformation, F. vesca has been a model plant for fruit research since the publication of its Illumina-based genome in 2011. However, its genomic contribution to octoploid cultivated strawberry remains a long-standing question. Here, we de novo assembled and annotated a telomere-to-telomere, gap-free genome of F. vesca 'Hawaii 4', with all seven chromosomes assembled into single contigs, providing the highest completeness and assembly quality to date. The gap-free genome is 220 785 082 bp in length and encodes 36 173 protein-coding gene models, including 1153 newly annotated genes. All 14 telomeres and seven centromeres were annotated within the seven chromosomes. Among the three previously recognized wild diploid strawberry ancestors, F. vesca, F. iinumae, and F. viridis, phylogenomic analysis showed that F. vesca and F. viridis are the ancestors of the cultivated octoploid strawberry F. × ananassa, and F. vesca is its closest relative. Three subgenomes of F. × ananassa belong to the F. vesca group, and one is sister to F. viridis. We anticipate that this high-quality, telomere-to-telomere, gap-free F. vesca genome, combined with our phylogenomic inference of the origin of cultivated strawberry, will provide insight into the genomic evolution of Fragaria and facilitate strawberry genetics and molecular breeding.
RESUMO
Fe-based oxypnictide superconductors were successfully synthesized at lower reaction temperatures and with shorter reaction times made possible by starting with less stable compounds, which provide a larger driving force for reactions. Using ball-milled powders of intermediate compounds, phase-pure superconductors with T(c) above 50 K were synthesized at 1173 K in 20 min. This method is particularly advantageous for retaining F, a volatile dopant that enhances superconductivity. Bulk superconductivity and high upper critical fields up to 392 T in Sm(0.85)Nd(0.15)FeAsO(0.85)F(0.15) were demonstrated.
RESUMO
BACKGROUND: We have proved fecal microbiota transplantation (FMT) is an efficacious remedy to mitigate acute radiation syndrome (ARS); however, the mechanisms remain incompletely characterized. Here, we aimed to tease apart the gut microbiota-produced metabolites, underpin the therapeutic effects of FMT to radiation injuries, and elucidate the underlying molecular mechanisms. RESULTS: FMT elevated the level of microbial-derived indole 3-propionic acid (IPA) in fecal pellets from irradiated mice. IPA replenishment via oral route attenuated hematopoietic system and gastrointestinal (GI) tract injuries intertwined with radiation exposure without precipitating tumor growth in male and female mice. Specifically, IPA-treated mice represented a lower system inflammatory level, recuperative hematogenic organs, catabatic myelosuppression, improved GI function, and epithelial integrity following irradiation. 16S rRNA gene sequencing and subsequent analyses showed that irradiated mice harbored a disordered enteric bacterial pattern, which was preserved after IPA administration. Notably, iTRAQ analysis presented that IPA replenishment retained radiation-reprogrammed protein expression profile in the small intestine. Importantly, shRNA interference and hydrodynamic-based gene delivery assays further validated that pregnane X receptor (PXR)/acyl-CoA-binding protein (ACBP) signaling played pivotal roles in IPA-favored radioprotection in vitro and in vivo. CONCLUSIONS: These evidences highlight that IPA is a key intestinal microbiota metabolite corroborating the therapeutic effects of FMT to radiation toxicity. Owing to the potential pitfalls of FMT, IPA might be employed as a safe and effective succedaneum to fight against accidental or iatrogenic ionizing ARS in clinical settings. Our findings also provide a novel insight into microbiome-based remedies toward radioactive diseases. Video abstract.
Assuntos
Inibidor da Ligação a Diazepam , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Indóis , Lesões por Radiação , Animais , Linhagem Celular , Inibidor da Ligação a Diazepam/metabolismo , Fezes/química , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos da radiação , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Hematopoese/efeitos dos fármacos , Indóis/administração & dosagem , Indóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Receptor de Pregnano X/metabolismo , RNA Ribossômico 16S/genética , Lesões por Radiação/terapia , Transdução de Sinais/efeitos dos fármacosRESUMO
Ionizing radiation-induced intestinal injury is a catastrophic disease with limited effective therapies. 3,3'-Diindolylmethane (DIM), a potent antioxidant agent, has previously been shown to ameliorate hematopoietic injury in a murine model of total body radiation injury, but its effects on ionizing radiation-induced intestinal damage are not clear. Here, we demonstrate that administration of DIM not only protects mice against whole abdominal irradiation (WAI)-induced lethality and weight loss but also ameliorates crypt-villus structural and functional injury of the small intestine. In addition, treatment with DIM significant enhances WAI-induced reductions in Lgr5+ ISCs and their progeny cells, including lysozyme+ Paneth cells, Villin+ enterocytes and Ki67+ instantaneous amplifying cells, thus promoting small intestine repair following WAI exposure. Notably, the expression of Nrf2 increased, while the number of apoptotic cells and the expression of γH2AX decreased in the small intestines of DIM-treated mice compared to mice treated with vehicle following WAI. In vitro, we demonstrated that DIM protected human intestinal epithelial cell-6 (HIEC-6) against ionizing radiation, leading to increased cell vitality. Mechanistically, the radioprotective effect of DIM was likely attributable to its anti-DNA damage effects in irradiated HIEC-6 cells. Moreover, these changes were related to reduction in reactive oxygen species (ROS) levels and increased the activities of antioxidant enzymatic in irradiated HIEC-6 cells. Additionally, the DIM radioprotective effects on the intestine resulted in the restoration of the WAI-shifted gut bacteria composition in mice. Collectively, our findings demonstrate that the beneficial properties of DIM mitigate intestinal radiation injury, which provides a novel strategy for improving the therapeutic effects of irradiation-induced intestinal injury.
Assuntos
Antioxidantes/farmacologia , Indóis/farmacologia , Lesões Experimentais por Radiação/tratamento farmacológico , Protetores contra Radiação/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Dano ao DNA/efeitos dos fármacos , Raios gama , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Histonas/efeitos dos fármacos , Histonas/efeitos da radiação , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Mucosa Intestinal/efeitos da radiação , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/patologia , Intestino Delgado/efeitos da radiação , Camundongos , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/efeitos da radiação , Lesões Experimentais por Radiação/genética , Lesões Experimentais por Radiação/patologia , Irradiação Corporal Total/efeitos adversosRESUMO
Accidental or iatrogenic ionizing radiation exposure precipitates acute and chronic radiation injuries. The traditional paradigm of mitigating radiotherapy-associated adverse side effects has ignored the gender-specific dimorphism of patients' divergent responses. Here, the effects of sexual dimorphism on curative efficiencies of therapeutic agents is examined in murine models of irradiation injury. Oral gavage of simvastatin ameliorates radiation-induced hematopoietic injury and gastrointestinal tract dysfunction in male mice, but adversely deteriorates these radiation syndromes in female animals. In a sharp contrast, feeding animals with high-fat diet (HFD) elicites explicitly contrary results. High-throughput sequencing of microbial 16S rRNA, host miRNA, and mRNA shows that simvastatin or HFD administration preventes radiation-altered enteric bacterial taxonomic structure, preserves miRNA expression profile, and reprogrammes the spectrum of mRNA expression in small intestines of male or female mice, respectively. Notably, faecal microbiota transplantation of gut microbes from opposite sexual donors abrogates the curative effects of simvastatin or HFD in respective genders of animals. Together, these findings demonstrate that curative efficiencies of therapeutic strategies mitigating radiation toxicity might be dependent on the gender of patients, thus simvastatin or HFD might be specifically useful for fighting against radiation toxicity in a sex-dependent fashion partly based on sex-distinct gut microbiota composition in preclinical settings.
RESUMO
OBJECTIVE: Antipsychotic drugs were incidentally discovered in the 1950s, but their mechanisms of action are still not understood. Better understanding of schizophrenia pathogenesis could shed light on actions of current drugs and reveal novel "druggable" pathways for unmet therapeutic needs. Recent genome-wide association studies offer unprecedented opportunities to characterize disease gene networks and uncover drug-disease relationships. Polygenic overlap between schizophrenia risk genes and antipsychotic drug targets has been demonstrated, but specific genes and pathways constituting this overlap are undetermined. Risk genes of polygenic disorders do not operate in isolation but in combination with other genes through protein-protein interactions among gene product. METHOD: The protein interactome was used to map antipsychotic drug targets (N=88) to networks of schizophrenia risk genes (N=328). RESULTS: Schizophrenia risk genes were significantly localized in the interactome, forming a distinct disease module. Core genes of the module were enriched for genes involved in developmental biology and cognition, which may have a central role in schizophrenia etiology. Antipsychotic drug targets overlapped with the core disease module and comprised multiple pathways beyond dopamine. Some important risk genes like CHRN, PCDH, and HCN families were not connected to existing antipsychotics but may be suitable targets for novel drugs or drug repurposing opportunities to treat other aspects of schizophrenia, such as cognitive or negative symptoms. CONCLUSIONS: The network medicine approach provides a platform to collate information of disease genetics and drug-gene interactions to shift focus from development of antipsychotics to multitarget antischizophrenia drugs. This approach is transferable to other diseases.
Assuntos
Antipsicóticos/uso terapêutico , Redes Reguladoras de Genes/efeitos dos fármacos , Esquizofrenia/tratamento farmacológico , Antipsicóticos/farmacologia , Redes Reguladoras de Genes/genética , Genes/genética , Predisposição Genética para Doença , Humanos , Herança Multifatorial/efeitos dos fármacos , Herança Multifatorial/genética , Mapeamento de Interação de Proteínas , Fatores de Risco , Esquizofrenia/genéticaRESUMO
There is an increasing interest in using Drosophila to model human brain degenerative diseases, map neuronal circuitries in adult brains, and study the molecular and cellular basis of higher brain functions. A whole-mount preparation of adult brains with well-preserved morphology is critical for such whole brain-based studies, but can be technically challenging and time-consuming. This protocol describes an easy-to-learn, one-step dissection approach of an adult fly head in less than 10 s, while keeping the intact brain attached to the rest of the body to facilitate subsequent processing steps. The procedure helps remove most of the eye and tracheal tissues normally associated with the brain that can interfere with the later imaging step, and also places less demand on the quality of the dissecting forceps. Additionally, we describe a simple method that allows convenient flipping of the mounted brain samples on a coverslip, which is important for imaging both sides of the brains with similar signal intensity and quality. As an example of the protocol, we present an analysis of dopaminergic (DA) neurons in adult brains of WT (w1118) flies. The high efficacy of the dissection method makes it particularly useful for large-scale adult brain-based studies in Drosophila.
Assuntos
Encéfalo/patologia , Dissecação/métodos , Drosophila , Animais , CabeçaRESUMO
2D ß-Ga2O3 flakes on a continuous 2D graphene film were prepared by a one-step chemical vapor deposition on liquid gallium surface. The composite was characterized by optical microscopy, scanning electron microscopy, Raman spectroscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy (XPS). The experimental results indicate that Ga2O3 flakes grew on the surface of graphene film during the cooling process. In particular, tenfold enhancement of graphene Raman scattering signal was detected on Ga2O3 flakes, and XPS indicates the C-O bonding between graphene and Ga2O3. The mechanism of Raman enhancement was discussed. The 2D Ga2O3-2D graphene structure may possess potential applications.
RESUMO
A novel dye-sensitized solar cell (DSSC) structure using vertically aligned single-walled carbon nanotubes (VASWCNTs) as the counter electrode has been developed. In this design, the VASWCNTs serve as a stable high surface area and highly active electrocatalytic counter-electrode that could be a promising alternative to the conventional Pt analogue. Utilizing a scalable dry transfer approach to form a VASWCNTs conductive electrode, the DSSCs with various lengths of VASWCNTs were studied. VASWCNTs-DSSC with 34 µm original length was found to be the optimal choice in the present study. The highest conversion efficiencies of VASWCNTs-DSSC achieved 5.5%, which rivals that of the reference Pt DSSC. From the electrochemical impedance spectroscopy analysis, it shows that the new DSSC offers lower interface resistance between the electrolyte and the counter electrode. This reproducible work emphasizes the promise of VASWCNTs as efficient and stable counter electrode materials in DSSC device design, especially taking into account the low-cost merit of this promising material.