Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 43(3): 681-691, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33931764

RESUMO

The PTEN/AKT/mTOR signaling pathway is frequently dysregulated in non-small cell lung cancer (NSCLC), but the mechanisms are not well-understood. The present study found that the ubiquitin ligase TRIM25 is highly expressed in NSCLC tissues and promotes NSCLC cell survival and tumor growth. Mechanistic studies revealed that TRIM25 binds to PTEN and mediates its K63-linked ubiquitination at K266. This modification prevents the plasma membrane translocation of PTEN and reduces its phosphatase activity therefore accumulating PI(3,4,5)P3. TRIM25 thus activates the AKT/mTOR signaling. Moreover, we found that the antibacterial nitroxoline can activate PTEN by reducing its K63-linked polyubiquitination and sensitizes NSCLC to cisplatin-induced apoptosis. This study thus identified a novel modulation on the PTEN signaling pathway by TRIM25 and provides a potential target for NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Ligação a DNA/metabolismo , Neoplasias Pulmonares/patologia , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Humanos , Nitroquinolinas/farmacologia , Monoéster Fosfórico Hidrolases/fisiologia , RNA Interferente Pequeno/metabolismo , Ubiquitinação/fisiologia
2.
Acta Pharmacol Sin ; 42(8): 1338-1346, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33184448

RESUMO

Recent studies show that the expression of CCND1, a key factor in cell cycle control, is increased following the progress and deteriotation of glioma and predicts poor outcomes. On the other hand, dysregulated deubiquitinase USP10 also predicts poor prognosis for patients with glioblastoma (GBM). In the present study, we investigated the interplay between CCND1 protein and USP10 in GBM cells. We showed that the expression of CCND1 was significantly higher in both GBM tissues and GBM-derived stem cells. USP10 interacted with CCND1 and prevented its K48- but not K63-linked polyubiquitination in GBM U251 and HS683 cells, which led to increased CCND1 stability. Consistent with the action of USP10 on CCND1, knockdown of USP10 by single-guided RNA downregulated CCND1 and caused GBM cell cycle arrest at the G1 phase and induced GBM cell apoptosis. To implement this finding in the treatment of GBMs, we screened a natural product library and found that acevaltrate (AVT), an active component derived from the herbal plant Valeriana jatamansi Jones was strikingly potent to induce GBM cell apoptosis, which was confirmed by the Annexin V staining and activation of the apoptotic signals. Furthermore, we revealed that AVT concentration-dependently suppressed USP10-mediated deubiquitination on CCND1 therefore inducing CCND1 protein degradation. Collectively, the present study demonstrates that the USP10/CCND1 axis could be a promising therapeutic target for patients with GBMs.


Assuntos
Ciclina D1/metabolismo , Glioblastoma/metabolismo , Iridoides/farmacologia , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação/fisiologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Glioblastoma/tratamento farmacológico , Células HEK293 , Humanos , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitinação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA