Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(27): e2218976120, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364092

RESUMO

By 2050, countries around the world are expected to be gradually phasing out fossil fuels and implementing greener energy technologies. In this work, we present a system employing Energy harvesting, a self-powered technology that can recycle energy from the surrounding environment. A high-efficiency radio frequency (RF) energy-harvesting chip was designed and fabricated. With an off-chip antenna and rectifier, the system scavenges ambient RF energy and converts it into usable energy, which is then stored in energy storage elements (such as a supercapacitor or a rechargeable battery). The system can further be implemented as an energy source for charging smart devices. The system-on-chip design consists of a cold start block, a boost converter with maximum power point tracking functionalities, and a charging block. The chip was fabricated using AMS 350 nm technology. Although the system was optimized for harvesting RF energy, it can be easily adapted to harvest other energy sources (i.e., mechanical and thermal energy sources). Using an optimized cold start architecture, the circuit has a cold start voltage of 380 mV. With an improved control strategy of power conversion, the system is capable of continuously charging up to 4.5 V with a broad input voltage range of 100 mV to 10 V and has a peak charging efficiency of 82%.

2.
Proc Natl Acad Sci U S A ; 120(19): e2215590120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126693

RESUMO

Chronic stress induces depression- and anxiety-related behaviors, which are common mental disorders accompanied not only by dysfunction of the brain but also of the intestine. Activating transcription factor 4 (ATF4) is a stress-induced gene, and we previously show that it is important for gut functions; however, the contribution of the intestinal ATF4 to stress-related behaviors is not known. Here, we show that chronic stress inhibits the expression of ATF4 in gut epithelial cells. ATF4 overexpression in the colon relieves stress-related behavioral alterations in male mice, as measured by open-field test, elevated plus-maze test, and tail suspension test, whereas intestine-specific ATF4 knockout induces stress-related behavioral alterations in male mice. Furthermore, glutamatergic neurons are inhibited in the paraventricular thalamus (PVT) of two strains of intestinal ATF4-deficient mice, and selective activation of these neurons alleviates stress-related behavioral alterations in intestinal ATF4-deficient mice. The highly expressed gut-secreted peptide trefoil factor 3 (TFF3) is chosen from RNA-Seq data from ATF4 deletion mice and demonstrated decreased in gut epithelial cells, which is directly regulated by ATF4. Injection of TFF3 reverses stress-related behaviors in ATF4 knockout mice, and the beneficial effects of TFF3 are blocked by inhibiting PVT glutamatergic neurons using DREADDs. In summary, this study demonstrates the function of ATF4 in the gut-brain regulation of stress-related behavioral alterations, via TFF3 modulating PVT neural activity. This research provides evidence of gut signals regulating stress-related behavioral alterations and identifies possible drug targets for the treatment of stress-related behavioral disorders.


Assuntos
Fator 4 Ativador da Transcrição , Tálamo , Masculino , Animais , Camundongos , Fator 4 Ativador da Transcrição/metabolismo , Tálamo/metabolismo , Neurônios/metabolismo , Camundongos Knockout , Colo/metabolismo
3.
Environ Monit Assess ; 196(2): 157, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228806

RESUMO

Copper (Cu), as one of the heavy metals widely used in industrial and agricultural activities, has a fundamental role in the pollution of water resources. Therefore, removing Cu from the aqueous solutions is considered an important challenge in the purification of water resources. Thus, in this study, sawdust with a diameter of 260-600 µm was used to remove Cu from the aqueous solutions. At first, sawdust was washed using distilled water and dried at laboratory temperature. Cu absorption experiments in closed conditions were performed based on the central composite design (CCD) model and with a range of initial Cu concentrations equal to 1-25 mgl-1. The amount of changes for other variables, including pH, time, and amount of sawdust, was equal to 2-10, 5-185 (min), and 5-25 (gl-1), respectively. After the completion of each test, the remaining Cu concentration in the solution was measured using atomic absorption, and the percentage of Cu removed was determined from the difference between the initial and final concentrations. The results showed that the CCD model has a favorable ability to predict Cu removal from the aqueous solutions (R2=0.90 and RSME=3.34%). Based on the Pareto analysis, contact time, the amount of sawdust, pH, and the Cu concentration had the most significant effect on removing Cu from the solution. Contact time, amount of sawdust, and pH were directly related, and the amount of dissolved Cu was proportional to the removal of Cu from the solution. Therefore, sawdust is desirable as a natural adsorbent, and the removal efficiency of Cu from solutions with low Cu concentration is very high (94%). In this regard, it is advised to use sawdust in the process of targeting Cu and heavy metals due to its low cost and availability.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Monitoramento Ambiental , Metais Pesados/análise , Cobre/análise , Poluentes Químicos da Água/análise , Água/análise , Concentração de Íons de Hidrogênio , Cinética
4.
FASEB J ; 36(10): e22541, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36083102

RESUMO

Impairment of gluconeogenesis is a key factor responsible for hyperglycemia in patients with type 2 diabetes. As an important member of the suppressors of cytokine signaling (SOCS) protein family, many physiological functions of cytokine-inducible SH2-containing protein (CISH) have been described; however, the role of hepatic CISH in gluconeogenesis is poorly understood. In the present study, we observed that hepatic CISH expression was reduced in fasted wild-type (WT) mice. Overexpression of CISH decreased glucose production in mouse primary hepatocytes, while silencing of CISH had the opposite effects. In addition, adenovirus-mediated hepatic CISH overexpression resulted in improved glucose tolerance and decreased gluconeogenesis in WT and leptin receptor-deficient diabetic (db/db) mice. In contrast, adenovirus-mediated hepatic CISH knockdown impaired glucose tolerance and increased gluconeogenesis in WT mice. We also generated liver-specific CISH knockout (LV-CISH KO) mice and discovered that these mice had a similar phenotype in glucose tolerance and gluconeogenesis as mice injected with adenoviruses that knockdown CISH expression. Mechanistically, we found that CISH overexpression decreased and CISH knockdown increased the mRNA and protein levels of glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase 1 (PEPCK), two key enzymes involved in gluconeogenesis, in vitro, and in vivo. Moreover, we discovered that the phosphorylation of cAMP-responsive element binding protein 1 (CREB), a transcription factor of G6pase and Pepck, was required for regulating gluconeogenesis by CISH. Taken together, this study identifies hepatic CISH as an important regulator of gluconeogenesis. Our results also provide important insights into the metabolic functions of the SOCS protein family and the potential targets for the treatment of diabetes.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Gluconeogênese , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Animais , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Glucose-6-Fosfatase/genética , Hepatócitos/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
5.
Zhongguo Zhong Yao Za Zhi ; 48(10): 2630-2638, 2023 May.
Artigo em Zh | MEDLINE | ID: mdl-37282924

RESUMO

Diabetic kidney disease is an important microvascular complication of diabetes and the leading cause of end-stage renal disease. Its pathological characteristics mainly include epithelial mesenchymal transition(EMT) in glomerulus, podocyte apoptosis and autophagy, and damage of glomerular filtration barrier. Transforming growth factor-ß(TGF-ß)/Smad signaling pathway is specifically regulated by a variety of mechanisms, and is a classic pathway involved in physiological activities such as apoptosis, proliferation and differentiation. At present, many studies have found that TGF-ß/Smad signaling pathway plays a key role in the pathogenesis of diabetic kidney disease. Traditional Chinese medicine has significant advantages in the treatment of diabetic kidney disease for its multi-component, multi-target and multi-pathway characteristics, and some traditional Chinese medicine extracts, traditional Chinese medicines and traditional Chinese medicine compound prescription improve the renal injury of diabetic kidney disease by regulating TGF-ß/Smad signaling pathway. This study clarified the mechanism of TGF-ß/Smad signaling pathway in diabetic kidney disease by expounding the relationship between the key targets of the pathway and diabetic kidney disease, and summarized the research progress of traditional Chinese medicine in the treatment of diabetic kidney disease by interfering with TGF-ß/Smad signaling pathway in recent years, to provide reference for drug research and clinical treatment of diabetic kidney disease in the future.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/genética , Medicina Tradicional Chinesa , Rim/patologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Transdução de Sinais , Transição Epitelial-Mesenquimal , Proteínas Smad/genética , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/genética
6.
FASEB J ; 35(6): e21652, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34004054

RESUMO

We have previously shown that leucine deprivation stimulates browning and lipolysis in white adipose tissue (WAT), which helps to treat obesity. Adipose tissue macrophages (ATMs) significantly influence WAT browning and lipolysis. However, it is unclear whether ATMs are involved in leucine deprivation-induced browning and lipolysis in WAT; the associated signals remain to be elucidated. Here, we investigated the role of ATMs and the possible mechanisms involved in WAT browning and lipolysis under leucine-deprivation conditions. In this study, macrophages were depleted in mice by injecting clodronate-liposomes (CLOD) into subcutaneous white adipose tissues. Then, mice lacking general control nonderepressible 2 kinase (GCN2), which is a sensor of amino acid starvation, specifically in Lyz2-expressing cells, were generated to investigate the changes in leucine deprivation-induced WAT browning and lipolysis. We found leucine deprivation decreased the accumulation and changed the polarization of ATMs. Ablation of macrophages by CLOD impaired WAT browning and lipolysis under leucine-deprivation conditions. Mechanistically, leucine deprivation activated GCN2 signals in macrophages. Myeloid-specific abrogation of GCN2 in mice blocked leucine deprivation-induced browning and lipolysis in WAT. Further analyses revealed that GCN2 activation in macrophages reduced the expression of monoamine oxidase A (MAOA), resulting in increased norepinephrine (NE) secretion from macrophages to adipocytes, and this resulted in enhanced WAT browning and lipolysis. Moreover, the injection of CL316,243, a ß3-adrenergic receptor agonist, and inhibition of MAOA effectively increased the level of NE, leading to the enhancement of browning and lipolysis of WAT in myeloid GCN2 knockout mice under leucine deprivation. Collectively, our results demonstrate a novel function of GCN2 signals in macrophages, that is, regulating WAT browning and lipolysis under leucine deprivation. Our study provides important hints for possible treatment for obesity.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Leucina/deficiência , Lipólise , Macrófagos/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Metabolismo Energético , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Termogênese
7.
Phys Chem Chem Phys ; 24(36): 21638-21644, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36063076

RESUMO

Although considered as promising candidates for lithium-ion secondary batteries, spinel LiMn2O4 cathodes suffer from significant capacity decay owing to the Jahn-Teller effect, dissolution of Mn and lattice oxygen loss during the charge/discharge process, preventing their wider use. In this work, we realize that F-doping at small concentrations could improve the battery voltage and reduce the capacity decay using an atomistic model. For voltage, F-doping improves the voltage to about 4.4 eV under large delithiation. For capacity decay, it retards capacity decay owing to the reduced lattice oxygen loss. The larger Gibbs free energy of oxygen release after F-doping indicates harder lattice oxygen loss. In addition, although F-doping makes the average valence of Mn lower, the existence of Mn4+ during delithiation exerts a positive effect by reducing the Jahn-Teller effect. However, since the Mn3+ ions in the spinel structure could induce Jahn-Teller distortion, the effect of F-doping on Jahn-Teller distortion is determined by the competition between Mn4+ and Mn3+. The atomistic mechanism of F-doping in the performance of LiMn2O4 offers new insight in developing spinel lithium manganese oxide cathode materials with superior performance.

8.
Mol Ther ; 28(2): 572-586, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31732298

RESUMO

MicroRNA24-2 (miR24-2) is associated with human tumorigenesis; however, its molecular mechanisms are poorly understood. Herein, our findings demonstrate that miR24-2 promotes the proliferation ability in vitro and the tumorigenic ability in vivo in human liver cancer stem cells (hLCSCs). Mechanically, the miR24-2 targets for 3' UTR (2,627-2,648) of protein arginine methyltransferase 7 (PRMT7) inhibit the translational ability of prmt7 gene. Moreover, miR24-2 inhibits the di-/tri-methylation of histone H4 arginine 3 by reducing PRMT7 and then promotes the expression of Nanog via long noncoding RNA HULC. Notably, miR24-2 inhibits histone deacetylase HDAC3 through miR675, which promotes the acetylation of histone H4 at lysine 16. Subsequently, miR24-2 enhances the interaction between LC3 and ATG4 dependent on PI3K and triggers cellular autophagy. Strikingly, miR24-2 inhibits the degradation of pyruvate kinase M1 via autophagosome-P62 in hLCSCs. Furthermore, miR24-2 enhances the activity of Src by promoting the binding of PKM1 to the Src promoter regions in hLCSCs. In particular, our results also indicate that src gene determines the oncogenic functions of miR24-2. These results provided a valuable theoretical basis for the discovery of liver cancer therapeutic targets and diagnosis markers based on miR24-2.


Assuntos
Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MicroRNAs/genética , Células-Tronco Neoplásicas/metabolismo , Quinases da Família src/genética , Acetilação , Autofagia , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Histonas/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Proteínas de Membrana/metabolismo , Metilação , Proteína Homeobox Nanog/genética , Proteína-Arginina N-Metiltransferases/genética , Interferência de RNA , Hormônios Tireóideos/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
9.
Sheng Li Xue Bao ; 73(5): 723-733, 2021 Oct 25.
Artigo em Zh | MEDLINE | ID: mdl-34708229

RESUMO

Amino acids are essential nutrients for humans and have a wide range of biological functions. They are the constituent units of protein and energy metabolites. In addition, they are also widely involved in the maintenance and regulation of various physiological functions, and play a role in transcription, translation, post-translational modification and other levels. The liver is a key metabolic organ, and it acts as a hub that connects the metabolism of various tissues. Amino acid sensing plays a very important role in the regulation of hepatic glucose and lipid metabolism. Therefore, accurately sensing the levels of intracellular and extracellular amino acids is the key to maintaining cell homeostasis. There are several well-known amino acid sensors in eukaryotic cells, such as general control non-derepressible-2 (GCN2), mammalian target of rapamycin (mTOR) and taste receptors, which play an important role in maintaining metabolic homeostasis. This article gives a detailed introduction to the role and mechanism of amino acids in regulating hepatic glucose and lipid metabolism, laying a foundation for further exploration of amino acid sensing mechanism and treatment of hepatic glucose and lipid metabolism disorders.


Assuntos
Aminoácidos , Glucose , Glucose/metabolismo , Homeostase , Humanos , Metabolismo dos Lipídeos , Fígado
10.
J Cell Mol Med ; 24(5): 2772-2790, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32030886

RESUMO

Several microRNAs are associated with carcinogenesis and tumour progression. Herein, our observations suggest both miR24-2 and Pim1 are up-regulated in human liver cancers, and miR24-2 accelerates growth of liver cancer cells in vitro and in vivo. Mechanistically, miR24-2 increases the expression of N6-adenosine-methyltransferase METTL3 and thereafter promotes the expression of miR6079 via RNA methylation modification. Furthermore, miR6079 targets JMJD2A and then increased the tri-methylation of histone H3 on the ninth lysine (H3K9me3). Therefore, miR24-2 inhibits JMJD2A by increasing miR6079 and then increases H3K9me3. Strikingly, miR24-2 increases the expression of Pim1 dependent on H3K9me3 and METTL3. Notably, our findings suggest that miR24-2 alters several related genes (pHistone H3, SUZ12, SUV39H1, Nanog, MEKK4, pTyr) and accelerates progression of liver cancer cells through Pim1 activation. In particular, Pim1 is required for the oncogenic action of miR24-2 in liver cancer. This study elucidates a novel mechanism for miR24-2 in liver cancer and suggests that miR24-2 may be used as novel therapeutic targets of liver cancer.


Assuntos
Progressão da Doença , Histonas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Lisina/metabolismo , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Animais , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Masculino , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Modelos Biológicos , Oncogenes , Proteínas Proto-Oncogênicas c-pim-1/genética
11.
Cell Physiol Biochem ; 52(5): 1103-1116, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30977991

RESUMO

BACKGROUND/AIMS: Gestational diabetes mellitus (GDM) is closely associated with early perinatal complications and long-term health problems, such as cardiovascular disease, in offspring. AMP-activated protein kinase (AMPK) is cardioprotective, particularly in the treatment of ischemia/reperfusion (I/R). However, whether GDM programs offspring susceptibility to cardiac I/R and the involvement of AMPK remain unclear. METHODS: Streptozotocin was administered to rats during mid pregnancy; the postpartum maternal metabolome was assessed by chromatography-mass spectrometry (GC-MS). Male offspring were subjected to body composition scanning followed by ex vivo global I/R. Cardiac signaling was determined by Western blotting. RESULTS: The body weights (BWs) of the GDM male offspring were significantly heavier than those of the control group from the age of 8 weeks; the heart weights (HWs) and HW/BW were also increased in the GDM group compared to the control group. The ex vivo post-I/R cardiac contractile function recovery was significantly compromised in the GDM male offspring. The phosphorylation of AMPK and ACC was elevated by ex vivo I/R in both groups, but to a significantly lesser extent in the GDM group. CONCLUSION: GDM male offspring rats have higher risks of overgrowth and intolerance to cardiac I/R, which may be due to a compromised AMPK signaling pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Gestacional/enzimologia , Contração Miocárdica , Traumatismo por Reperfusão Miocárdica/enzimologia , Transdução de Sinais , Animais , Diabetes Gestacional/induzido quimicamente , Diabetes Gestacional/patologia , Feminino , Masculino , Traumatismo por Reperfusão Miocárdica/patologia , Tamanho do Órgão , Gravidez , Ratos
12.
Immunopharmacol Immunotoxicol ; 41(1): 32-39, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30724631

RESUMO

Background: Dehydroxymethylepoxyquinomicin (DHMEQ) is a specific and potent inhibitor of nuclear factor-kappa B (NF-κB) and has been shown to possess promising potential as an anti-inflammation including anti-atopic dermatitis (AD)-like skin lesions. Objective: To further evaluate the activity of DHMEQ in vivo modified AD-like lesion model in BALB/c mice and in vitro AD-like lesion cell model in human keratinocytes. Materials and methods: In this study, in vivo modified AD-like lesion model in BALB/c mice was chronically induced by the repetitive and alternative application of 2,4-dinitrochlorobenzene (DNCB) and oxazolone (OX) on ears, and stratum corneum of the ear skin was additionally stripped off with surgical tapes before each challenge with DNCB/OX. Moreover, in vitro AD-like lesion cell model in human keratinocytes (HaCaT) achieved by stimulating HaCaT cells with tumor necrosis factor (TNF)-α plus interferon (IFN)-γ was used to investigate mechanisms of the action. Results: The lesions derived from the stratum corneum-removed AD-like lesion model reaches to peak as well as DHMEQ arrives to its efficacy a week earlier than the data previously obtained from the common AD-like lesion model. Results showed that the drug reduced the ear thickness, epidermal thickness, mast cell infiltration, and gene expressions of interleukin (IL)-4, IL-13, and interferon (IFN)-γ in ear tissues. It significantly inhibited the expression of cytokines IL-6 and IL-1ß, chemokines thymus and activation-regulated chemokine (TARC)/CCL17, and macrophage-derived chemokine (MDC)/CCL22 in the stimulated HaCaT cells. Discussion and conclusion: This study indicated that the action of DHMEQ's anti-AD like lesions might be related to its inhibition on NF-κB.


Assuntos
Anti-Inflamatórios/uso terapêutico , Benzamidas/uso terapêutico , Cicloexanonas/uso terapêutico , Dermatite Atópica/prevenção & controle , Epiderme/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Animais , Linhagem Celular , Citocinas/antagonistas & inibidores , Citocinas/imunologia , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Dinitroclorobenzeno , Modelos Animais de Doenças , Epiderme/imunologia , Epiderme/patologia , Feminino , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Camundongos Endogâmicos BALB C , Fator de Necrose Tumoral alfa/imunologia
13.
J Environ Manage ; 214: 335-345, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29533831

RESUMO

Plant polyphenol (PP), a natural polymer from the Larix gmelinii, was selected as the surfactant to synthesize Fe3O4. The Fe3O4-PP composite was prepared by in-situ self-assembly in solvothermal synthesis, and characterized using FE-SEM, TEM, XRD, FTIR, XPS, TGA, and VSM. The harvesting efficiency of Chlorella vulgaris was investigated under different parameters, including algal organic matter, dosage, and pH. The results showed that the core-shell sphere of Fe3O4-PP (∼150 nm) was coated by ∼50 nm PP with a saturated magnetization of 40.0 emu/g. The Fe3O4-PP could be directly applied to the culture broth (1.5 g dry cell weight/L, pH = 9.03), achieving 93.0% of harvesting efficiency at 20 g/L. Cells were detached from the harvested aggregates by adjusting pH value to 9.80 and with ultrasonication, which achieved 95.6% of recovery efficiency. The recycled Fe3O4-PP showed high stabilities in surface properties, maintaining more than 87.5% of harvesting efficiency after five recycles.


Assuntos
Chlorella vulgaris , Compostos de Ferro/química , Polímeros , Microalgas , Propriedades de Superfície
14.
Plant Cell ; 26(5): 1878-1900, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24838975

RESUMO

Nascent allohexaploid wheat may represent the initial genetic state of common wheat (Triticum aestivum), which arose as a hybrid between Triticum turgidum (AABB) and Aegilops tauschii (DD) and by chromosome doubling and outcompeted its parents in growth vigor and adaptability. To better understand the molecular basis for this success, we performed mRNA and small RNA transcriptome analyses in nascent allohexaploid wheat and its following generations, their progenitors, and the natural allohexaploid cultivar Chinese Spring, with the assistance of recently published A and D genome sequences. We found that nonadditively expressed protein-coding genes were rare but relevant to growth vigor. Moreover, a high proportion of protein-coding genes exhibited parental expression level dominance, with genes for which the total homoeolog expression level in the progeny was similar to that in T. turgidum potentially participating in development and those with similar expression to that in Ae. tauschii involved in adaptation. In addition, a high proportion of microRNAs showed nonadditive expression upon polyploidization, potentially leading to differential expression of important target genes. Furthermore, increased small interfering RNA density was observed for transposable element-associated D homoeologs in the allohexaploid progeny, which may account for biased repression of D homoeologs. Together, our data provide insights into small RNA-mediated dynamic homoeolog regulation mechanisms that may contribute to heterosis in nascent hexaploid wheat.

15.
Immunopharmacol Immunotoxicol ; 39(3): 157-164, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28418286

RESUMO

CONTEXT: Dehydroxymethylepoxyquinomicin (DHMEQ) which is originally developed as an analog of antibiotic epoxyquinomicin C is a specific and potent inhibitor of NF-κB and has been shown to possess promising potential as an anti-inflammatory and anti-tumor agent. OBJECTIVE: This study examines DHMEQ's effect on therapeutic potential for atopic dermatitis (AD)-like lesions. MATERIALS AND METHODS: AD lesions were chronically induced by the repetitive and alternative application of 2,4-dinitrochlorobenzene (DNCB) and oxazolone (OX) on ears in BALB/c mice. The mice were then externally treated with DHMEQ ointment. Macroscopic and microscopic changes of the skin lesions were observed and recorded. RESULTS: DHMEQ inhibited ear swelling and relieved clinical symptoms of the AD-like lesions induced by DNCB/OX in BALB/c mice. Histopathology examination illustrated that it significantly decreased DNCB/OX-induced epidermal thickness, the infiltration of inflammatory cells, and the count of mast cell. The elevated level of immunoglobulin E (IgE) in serum and the mRNA levels of interferon γ (IFN-γ), interleukin 4 (IL-4) and IL-13 in the ear tissues, were also suppressed by DHMEQ. DISCUSSION AND CONCLUSION: This study indicated that DHMEQ would be useful for the treatment of AD.


Assuntos
Benzamidas/farmacologia , Cicloexanonas/farmacologia , Dermatite Atópica , Dinitroclorobenzeno/toxicidade , Epiderme , NF-kappa B/antagonistas & inibidores , Oxazolona/toxicidade , Animais , Citocinas/imunologia , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Epiderme/imunologia , Epiderme/patologia , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/imunologia , Pomadas
16.
BMC Plant Biol ; 15: 149, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26084405

RESUMO

BACKGROUND: Miniature inverted repeat transposable elements (MITEs) are important components of eukaryotic genomes, with hundreds of families and many copies, which may play important roles in gene regulation and genome evolution. However, few studies have investigated the molecular mechanisms involved. In our previous study, a Tourist-like MITE, Monkey King, was identified from the promoter region of a flowering time gene, BnFLC.A10, in Brassica napus. Based on this MITE, the characteristics and potential roles on gene regulation of the MITE family were analyzed in Brassicaceae. RESULTS: The characteristics of the Tourist-like MITE family Monkey King in Brassicaceae, including its distribution, copies and insertion sites in the genomes of major Brassicaceae species were analyzed in this study. Monkey King was actively amplified in Brassica after divergence from Arabidopsis, which was indicated by the prompt increase in copy number and by phylogenetic analysis. The genomic variations caused by Monkey King insertions, both intra- and inter-species in Brassica, were traced by PCR amplification. Genomic sequence analysis showed that most complete Monkey King elements are located in gene-rich regions, less than 3kb from genes, in both the B. rapa and A. thaliana genomes. Sixty-seven Brassica expressed sequence tags carrying Monkey King fragments were also identified from the NCBI database. Bisulfite sequencing identified specific DNA methylation of cytosine residues in the Monkey King sequence. A fragment containing putative TATA-box motifs in the MITE sequence could bind with nuclear protein(s) extracted from leaves of B. napus plants. A Monkey King-related microRNA, bna-miR6031, was identified in the microRNA database. In transgenic A. thaliana, when the Monkey King element was inserted upstream of 35S promoter, the promoter activity was weakened. CONCLUSION: Monkey King, a Brassicaceae Tourist-like MITE family, has amplified relatively recently and has induced intra- and inter-species genomic variations in Brassica. Monkey King elements are most abundant in the vicinity of genes and may have a substantial effect on genome-wide gene regulation in Brassicaceae. Monkey King insertions potentially regulate gene expression and genome evolution through epigenetic modification and new regulatory motif production.


Assuntos
Brassicaceae/genética , Elementos de DNA Transponíveis/genética , Evolução Molecular , Sequências Repetidas Invertidas/genética , Arabidopsis/genética , Composição de Bases/genética , Sequência de Bases , Mapeamento Cromossômico , Simulação por Computador , Metilação de DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Genoma de Planta , MicroRNAs/genética , MicroRNAs/metabolismo , Dados de Sequência Molecular , Mutagênese Insercional/genética , Proteínas Nucleares/metabolismo , Filogenia , Plantas Geneticamente Modificadas , Polimorfismo Genético , Regiões Promotoras Genéticas/genética , Especificidade da Espécie
17.
J Exp Bot ; 66(22): 7241-53, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26357884

RESUMO

The recently published genome of Brassica napus offers for the first time the opportunity to gain insights into the genomic organization and the evolution of miRNAs in oilseed rape. In this study, 12 small RNA libraries from two B. napus cultivars (Tapidor and Ningyou7) and their four double-haploid lines were sequenced, employing the newly sequenced B. napus genome, together with genomes of its progenitors Brassica rapa and Brassica oleracea. A total of 645 miRNAs including 280 conserved and 365 novel miRNAs were identified. Comparative analysis revealed a high level of genomic conservation of MIRNAs (75.9%) between the subgenomes of B. napus and its two progenitors' genomes, and MIRNA lost/gain events (133) occurred in B. napus after its speciation. Furthermore, significant partitioning of miRNA expressions between the two subgenomes in B. napus was detected. The data of degradome sequencing, miRNA-mediated cleavage, and expression analyses support specific interactions between miRNAs and their targets in the modulation of diverse physiological processes in roots and leaves, as well as in biosynthesis of, for example, glucosinolates and lipids in oilseed rape. These data provide a first genome-wide view on the origin, evolution, and genomic organization of B. napus MIRNAs.


Assuntos
Brassica napus/genética , MicroRNAs/biossíntese , RNA de Plantas/biossíntese , Brassica rapa/genética , Mapeamento Cromossômico , Evolução Molecular , Genoma de Planta , Especificidade da Espécie
18.
Acta Pharmacol Sin ; 36(12): 1473-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26592514

RESUMO

AIM: Transplantation of mesenchymal stem cells (MSCs) for the treatment of diabetic erectile dysfunction (ED) is hampered by apoptosis of the transplanted cells. In diabetic ED, there is increased oxidative stress and decreased NO in the corpora cavernosa, and reactive oxygen species (ROS) induce apoptosis of the transplanted cells. In this study we examined whether and how autophagy was involved in ROS-induced apoptosis of MSCs. METHODS: Mouse C3H10 MSCs were treated with H2O2 to simulate the high oxidative condition in diabetic ED. Cell viability was measured using MTT assay. Apoptosis was analyzed by flow cytometry. Apoptosis- and autophagy-related proteins were detected with Western blot assays. Intracellular autophagosome accumulation was studied using transmission electron microscopy. RESULTS: Treatment of MSCs with H2O2 (50-400 µmol/L) inhibited the cell viability in concentration- and time-dependent manners. Furthermore, H2O2 (300 µmol/L) induced apoptosis, as well as activated autophagy in MSCs. Pretreatment with lysosome inhibitor chloroquine (10 µmol/L) or PI3K inhibitor 3-methyladenine (5 mmol/L) significantly enhanced H2O2-induced cell death. Pretreatment with JNK inhibitor SP600125 (10 µmol/L) abrogated H2O2-induced accumulation of LC3-II, and attenuated H2O2-induced reduction of Bcl-2 levels in MSCs. CONCLUSION: ROS induce autophagy to counteract apoptosis in MSCs by activation of JNK. Thus, augmentation of autophagy may reduce apoptosis, prolonging MSC survival and improving MSC-based therapeutic efficacy for diabetic ED.


Assuntos
Apoptose , Autofagia , MAP Quinase Quinase 4/metabolismo , Células-Tronco Mesenquimais/citologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Ativação Enzimática , Disfunção Erétil/terapia , Peróxido de Hidrogênio/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Camundongos , Estresse Oxidativo
19.
Fish Physiol Biochem ; 40(6): 1669-81, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24992902

RESUMO

In the present study, a full-length cDNA encoding the insulin-like growth factor binding protein-2 (IGFBP-2) was cloned from the liver of goldfish (Carassius auratus) by rapid amplification of cDNA ends technique. The goldfish IGFBP-2 cDNA sequence was 1,513 bp long and had an open reading frame of 825 bp encoding a predicted polypeptide of 274 amino acid residues. Semi-quantitative RT-PCR results revealed that goldfish IGFBP-2 mRNA was expressed in all detected tissues. In liver, central nervous system and pituitary gland, goldfish IGFBP-2 expressed at high levels, followed by anterior intestine, middle intestine and kidney. In posterior intestine, ovary, skin, fat, spleen, muscle and gill, the goldfish IGFBP-2 expression levels were very low. Fasting and refeeding experiment showed that the mRNA expression of goldfish IGFBP-2 was up-regulated significantly in liver compared to the fed group and restored rapidly to normal level after refed. However, the mRNA expressions of IGFBP-2 in hypothalamus and pituitary of goldfish were insensitive to fasting. Furthermore, the mRNA expressions of IGFBP-2 in hypothalamus, pituitary and liver were varied in periprandial changes and significantly down-regulated at 2 and 4 h after meal. These results imply that the IGFBP-2 mRNA expression may be associated with anabolic and catabolic metabolism and regulated by metabolic factors in goldfish.


Assuntos
Regulação da Expressão Gênica/fisiologia , Carpa Dourada/metabolismo , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , Privação de Alimentos/fisiologia , Hipotálamo/metabolismo , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Fígado/metabolismo , Dados de Sequência Molecular , Hipófise/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
J Ethnopharmacol ; 323: 117673, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38158096

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tribuloside, a natural flavonoid extracted from Chinese medicine Tribulus terrestris L., has shown potent efficacy in treating various diseases. In China, the fruits of Tribulus terrestris L. have long been utilized for relieving headache, dizziness, itchiness, and vitiligo. Water-based extract derived from Tribulus terrestris L. can enhance melanogenesis in mouse hair follicle melanocytes by elevating the expression of α-melanocyte stimulating hormone (α-MSH) and melanocortin-1 recepter (MC-1R). Nevertheless, there is a lack of information regarding the impact of tribuloside on pigmentation in both laboratory settings and living organisms. AIM OF THE STUDY: The present research aimed to examine the impact of tribuloside on pigmentation, and delve into the underlying mechanism. MATERIALS AND METHODS: Following the administration of tribuloside in human epidermal melanocytes (HEMCs), we utilized microplate reader, Masson-Fontana ammoniacal silver stain, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) to measure melanin contents, dendrite lengths, melanosome counts; L-DOPA oxidation assay to indicate tyrosinase activity, Western blotting to evaluate the expression of melanogenic and associated phosphodiesterase (PDE)/cyclic adenosine monophosphate (cAMP)/cyclic-AMP dependent protein kinase A (PKA) pathway proteins. A PDE-Glo assay to verify the inhibitory effect of tribuloside on PDE was also conducted. Additionally, we examined the impact of tribuloside on the pigmentation in both zebrafish model and human skin samples. RESULTS: Tribuloside had a notable impact on the production of melanin in melanocytes, zebrafish, and human skin samples. These functions might be attributed to the inhibitory effect of tribuloside on PDE, which could increase the intracellular level of cAMP to stimulate the phosphorylation of cAMP-response element binding (CREB). Once activated, it induced microphthalmia-associated transcription factor (MITF) expression and increased the expression of tyrosinase, Rab27a and cell division cycle protein 42 (Cdc42), ultimately facilitating melanogenesis, melanocyte dendricity, and melanin transport. CONCLUSION: Tribuloside acts on the PDE/cAMP/PKA pathway to enhance melanogenesis, melanocyte dendricity, and melanosome transport; meanwhile, tribuloside does not have any toxic effects on cells and may be introduced into clinical prescriptions to promote pigmentation.


Assuntos
Melaninas , Melanossomas , Animais , Camundongos , Humanos , Melaninas/metabolismo , Melanossomas/metabolismo , Peixe-Zebra , Monofenol Mono-Oxigenase/metabolismo , Melanogênese , Diester Fosfórico Hidrolases/metabolismo , Diester Fosfórico Hidrolases/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Melanócitos , AMP Cíclico/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA