Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 219, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424541

RESUMO

BACKGROUND: The rapid emergence and global dissemination of the Omicron variant of SARS-CoV-2 have posed formidable challenges in public health. This scenario underscores the urgent need for an enhanced understanding of Omicron's pathophysiological mechanisms to guide clinical management and shape public health strategies. Our study is aimed at deciphering the intricate molecular mechanisms underlying Omicron infections, particularly focusing on the identification of specific biomarkers. METHODS: This investigation employed a robust and systematic approach, initially encompassing 15 Omicron-infected patients and an equal number of healthy controls, followed by a validation cohort of 20 individuals per group. The study's methodological framework included a comprehensive multi-omics analysis that integrated proteomics and metabolomics, augmented by extensive bioinformatics. Proteomic exploration was conducted via an advanced Ultra-High-Performance Liquid Chromatography (UHPLC) system linked with mass spectrometry. Concurrently, metabolomic profiling was executed using an Ultra-Performance Liquid Chromatography (UPLC) system. The bioinformatics component, fundamental to this research, entailed an exhaustive analysis of protein-protein interactions, pathway enrichment, and metabolic network dynamics, utilizing state-of-the-art tools such as the STRING database and Cytoscape software, ensuring a holistic interpretation of the data. RESULTS: Our proteomic inquiry identified eight notably dysregulated proteins (THBS1, ACTN1, ACTC1, POTEF, ACTB, TPM4, VCL, ICAM1) in individuals infected with the Omicron variant. These proteins play critical roles in essential physiological processes, especially within the coagulation cascade and hemostatic mechanisms, suggesting their significant involvement in the pathogenesis of Omicron infection. Complementing these proteomic insights, metabolomic analysis discerned 146 differentially expressed metabolites, intricately associated with pivotal metabolic pathways such as tryptophan metabolism, retinol metabolism, and steroid hormone biosynthesis. This comprehensive metabolic profiling sheds light on the systemic implications of Omicron infection, underscoring profound alterations in metabolic equilibrium. CONCLUSIONS: This study substantially enriches our comprehension of the physiological ramifications induced by the Omicron variant, with a particular emphasis on the pivotal roles of coagulation and platelet pathways in disease pathogenesis. The discovery of these specific biomarkers illuminates their potential as critical targets for diagnostic and therapeutic strategies, providing invaluable insights for the development of tailored treatments and enhancing patient care in the dynamic context of the ongoing pandemic.


Assuntos
Multiômica , Proteômica , Humanos , Metabolômica , Metabolismo dos Lipídeos , Biomarcadores
2.
J Clin Lab Anal ; 38(1-2): e25008, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38235610

RESUMO

PURPOSE: Blood culture (BC) remains the gold standard for the diagnosis of bloodstream infections. Improving the quality of clinical BC samples, optimizing BC performance, and accelerating antimicrobial susceptibility test (AST) results are essential for the early detection of bloodstream infections and specific treatments. METHODS: We conducted a retrospective multicenter study using 450,845 BC specimens from clinical laboratories obtained from 19 teaching hospitals between 1 January 2021 and 31 December 2021. We evaluated key performance indicators (KPIs), turnaround times (TATs), and frequency distributions of processing in BC specimens. We also evaluated the AST results of clinically significant isolates for four different laboratory workflow styles. RESULTS: Across the 10 common bacterial isolates (n = 16,865) and yeast isolates (n = 1011), the overall median (interquartile range) TATs of AST results were 2.67 (2.05-3.31) and 3.73 (2.98-4.64) days, respectively. The specimen collections mainly occurred between 06:00 and 24:00, and specimen reception and loadings mainly between 08:00 and 24:00. Based on the laboratory workflows of the BCs, 16 of the 19 hospitals were divided into four groups. Time to results (TTRs) from specimen collection to the AST reports were 2.35 (1.95-3.06), 2.61 (1.98-3.32), 2.99 (2.60-3.87), and 3.25 (2.80-3.98) days for groups I, II, III, and IV, respectively. CONCLUSION: This study shows the related BC KPIs and workflows in different Chinese hospitals, suggesting that laboratory workflow optimization can play important roles in shortening time to AST reports and initiation of appropriate timely treatment.


Assuntos
Laboratórios , Sepse , Humanos , Hemocultura , Laboratórios Clínicos , Fatores de Tempo , Hospitais de Ensino , Sepse/diagnóstico
3.
Microb Pathog ; 161(Pt A): 105259, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34687838

RESUMO

BACKGROUND: The worldwide response towards the acute gastroenteritis epidemic was well known, but the absence of an updated systematic review of global norovirus epidemiology in cases of gastroenteritis existed. We aimed to conduct and update a systematic review and meta-analysis of studies assessing norovirus prevalence among gastroenteritis patients worldwide. METHODS: Four databases (PubMed, EMBASE, Cochrane Library, and Web of Science) were searched for epidemiological papers from 2014 to 2021 which applied the PCR method to access the prevalence of norovirus in acute gastroenteritis patients more than a full year. Statistical analysis was conducted using R-4.0.0 software. RESULTS: A total of 405 records with 842, 926 cases were included. The pooled prevalence of norovirus was 16% (95%CI 15, 17). Children under 5 years old were at a higher risk with norovirus. A higher prevalence was seen in South America (22%, 95% CI 18, 27), while other continents showed a similar result with the overall prevalence of norovirus. No association was found between national income level and norovirus prevalence. A gradient of decreasing prevalence was noticed from community (20%, 95% CI 16, 24) to outpatients (18%, 95% CI 16, 20) to hospital setting (included both in- and outpatients, 17%, 95% CI 16, 19) to inpatients (15%, 95% CI 13, 17). CONCLUSION: Norovirus were associated with 16% acute gastroenteritis globally. To fully understand the prevalence of norovirus worldwide, the continual surveillance of norovirus epidemics was required.


Assuntos
Infecções por Caliciviridae , Gastroenterite , Norovirus , Infecções por Caliciviridae/epidemiologia , Criança , Pré-Escolar , Fezes , Gastroenterite/epidemiologia , Genótipo , Humanos , Lactente , Prevalência
4.
BMC Infect Dis ; 21(1): 248, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750333

RESUMO

BACKGROUND: Human noroviruses are one of the main causes of foodborne illnesses and represent a serious public health concern. Rapid and sensitive assays for human norovirus detection are undoubtedly necessary for clinical diagnosis, especially in regions without more sophisticated equipment. METHOD: The rapid reverse transcription recombinase-aided amplification (RT-RAA) is a fast, robust and isothermal nucleic acid detection method based on enzyme reaction. This method can complete the sample detection at 39 °C in 30 min. In this study, we successfully established a rapid reverse transcription recombinase-aided amplification (RT-RAA) assay for the detection of human norovirus GII.4 and applied this assay to clinical samples, as well as comparison with commercial reverse transcription real-time fluorescence quantitative PCR (RT-qPCR). RESULTS: At 95% probability, the detection sensitivity of RT-RAA was 3.425 log10 genomic copies (LGC)/reaction. Moreover, no cross-reaction was observed with other norovirus genogroups and other common foodborne viruses. Stool samples were examined by RT-RAA and reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). Compared of RT-qPCR, kappa values for human norovirus detection with RT-RAA were 0.894 (p < 0.001), indicating that both assays were in agreement. CONCLUSION: This RT-RAA assay provides a rapid, specific, and sensitive assay for human norovirus detection and is suitable for clinical testing.


Assuntos
Infecções por Caliciviridae/diagnóstico , Gastroenterite/diagnóstico , Norovirus/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Sequência de Bases , Infecções por Caliciviridae/virologia , Primers do DNA/metabolismo , Gastroenterite/virologia , Genótipo , Humanos , Norovirus/isolamento & purificação , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , Recombinases/metabolismo , Sensibilidade e Especificidade , Alinhamento de Sequência
5.
Plant Cell Rep ; 38(5): 587-596, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30712103

RESUMO

KEY MESSAGE: Overexpression of grapevine VvABF2 gene could enhance osmotic stress tolerance in Arabidopsis thaliana but fully required for ABA signaling. The abscisic acid (ABA)-dependent AREB/ABF-SnRK2 pathway has been demonstrated to play a pivotal role in response to osmotic stress in model plants. However, its function in other specific species, for example grapevine, has not been fully characterized. In this study, grapevine (Vitis vinifera L.) ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 (VvABF2), a homologous gene of AREB/ABFs form Arabidopsis, was isolated and constitutively expressed in Arabidopsis under the control of the cauliflower mosaic virus 35S promoter. The VvABF2 transgenic Arabidopsis plants showed to be more sensitive to exogenous ABA compared to wild type plants and exhibited significant osmotic tolerance, like polyethylene glycol (PEG) and drought but fully required ABA for signaling. This fact was further confirmed by its downstream gene expression assays. In addition, the determination of ROS antioxidant enzymes (including SOD, POD and CAT) and the MDA of transgenic lines indicated that overexpression of VvABF2 in Arabidopsis significantly increased ROS scavenging ability and thereby reduced the cell membrane damage, which might be ABA-independent. Our results provide evidence that VvABF2 has a similar function to the Arabidopsis homolog in response to osmotic stresses, and that there is a similar ancestral function of this gene in ABA-dependent response to stresses in grapevine.


Assuntos
Ácido Abscísico/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Plantas/metabolismo , Vitis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação da Expressão Gênica de Plantas , Pressão Osmótica , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Vitis/genética
6.
Microb Pathog ; 114: 453-457, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29241766

RESUMO

Integron was recognized as mobile elements responsible for the emergence and diffusion of antibiotic resistance, virulence and pathogenicity. The existence of resistant integron in pathogens may consequently lead to the increasing number of clinical failures in bacterial mediated diseases, as well as the expenses. In this study, a total of 22 clinical pathogens (including E. faecalis, S. aureus, K. pneumoniae, Enterobacter, P. aeruginosa and Acinetobacter) were subjected to the identification of class 1-class 3 integrons and drug resistant gene cassettes by high flux LAMP method. According to the results, the clinical isolates were screened as carrying class 1 integron with dfrA12-orfF-aadA2 cassette array, class 1 integron with dfrA17-aadA5 cassette array, class 1 integron with aadA2 cassette, class 1 integron with blaVIM2 cassette, class 1 and class 2 integron with dfrA1-sat1-aadA1 and dfrA12-orfF-aadA2 cassette arrays simultaneously, which was accordantly with the previous data. The optimized high flux LAMP assay was proceeded in water bath at 65 °C for 60 min and determined by naked eye, with the time consumption restricted within 2.5 h. Prior to conventional PCR method, the high flux LAMP assay was demonstrated as a highly-specific and highly-sensitive method. This study offered a valid LAMP method in resistance integrons detection for laboratory use, which was time-saving and easy-determination.


Assuntos
Bactérias/genética , Farmacorresistência Bacteriana/genética , Genes Bacterianos/genética , Integrons/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Fatores de Virulência/genética , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas , Primers do DNA , DNA Bacteriano , Farmacorresistência Bacteriana/efeitos dos fármacos , Temperatura Alta , Humanos , Reação em Cadeia da Polimerase/métodos , Sensibilidade e Especificidade , Virulência/efeitos dos fármacos , Virulência/genética
7.
Heliyon ; 10(5): e26567, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38463890

RESUMO

Norovirus, commonly found on shellfish and vegetables, is a foodborne virus with GII.4 as the dominant genotype responsible for widespread outbreaks since 1995. Continuous variation of major capsid protein VP1 can lead to changes in the immunogenicity and host receptor binding ability of norovirus, which is an important evolutionary mechanism. Therefore, analyzing the immunogenicity of VP1 and its binding ability to various HBGAs in GII.4 variants could improve our understanding of the persistent prevalence of GII.4. Here, the results suggest that GII.4 has gradually enhanced its HBGAs binding ability over time for various types of receptors. Variants exhibit significantly stronger immune response to homologous mouse antiserum than heterologous ones, highlighting the importance of variation of antigenic and histo-blood group binding sites in driving the evolution of GII.4. These synergistic forces constantly lead to antigenic drift and changes in receptor binding, resulting in continuous emergence of new variant strains and sustained prevalence.

8.
Emerg Microbes Infect ; 13(1): 2361030, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38801248

RESUMO

BACKGROUND: Surveillance systems revealed that the prevalence of vancomycin-resistant Enterococcus faecium (VREfm) has increased. We aim to investigate the epidemiological and genomic characteristics of VREfm in China. METHODS: We collected 20,747 non-redundant E. faecium isolates from inpatients across 19 hospitals in six provinces between January 2018 and June 2023. VREfm was confirmed by antimicrobial susceptibility testing. The prevalence was analyzed using changepoint package in R. Genomic characteristics were explored by whole-genome sequencing. RESULTS: 5.59% (1159/20,747) of E. faecium isolates were resistant to vancomycin. The prevalence of VREfm increased in Guangdong province from 5% before 2021 to 20-50% in 2023 (p < 0.0001), but not in the other five provinces. Two predominant clones before 2021, ST17 and ST78, were substituted by an emerging clone, ST80, from 2021 to 2023 (88.63%, 195/220). All ST80 VREfm from Guangdong formed a single lineage (SC11) and were genetically distant from the ST80 VREfm from other countries, suggesting a regional outbreak. All ST80 VREfm in SC11 carried a new type of plasmid harbouring a vanA cassette, which was embedded in a Tn1546-like structure flanked by IS1678 and ISL3. However, no conjugation-related gene was detected and no transconjugant was obtained in conjugation experiment, indicating that the outbreak of ST80 VREfm could be attributed to clonal transmission. CONCLUSIONS: We revealed an ongoing outbreak of ST80 VREfm with a new vanA-harbouring plasmid in Guangdong, China. This clone has also been identified in other provinces and countries, foreboding a risk of wider spreading shortly. Continuous surveillance is needed to inform public health interventions.


Assuntos
Surtos de Doenças , Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Enterococos Resistentes à Vancomicina , Sequenciamento Completo do Genoma , China/epidemiologia , Humanos , Enterococcus faecium/genética , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/isolamento & purificação , Enterococcus faecium/classificação , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Enterococos Resistentes à Vancomicina/genética , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Enterococos Resistentes à Vancomicina/isolamento & purificação , Masculino , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Genoma Bacteriano , Prevalência , Criança , Adulto Jovem , Filogenia , Vancomicina/farmacologia , Adolescente
9.
Front Cell Infect Microbiol ; 13: 1220943, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37822360

RESUMO

Worldwide, lower respiratory tract infections (LRTI) are an important cause of hospitalization in children. Due to the relative limitations of traditional pathogen detection methods, new detection methods are needed. The purpose of this study was to evaluate the value of metagenomic next-generation sequencing (mNGS) of bronchoalveolar lavage fluid (BALF) samples for diagnosing children with LRTI based on the interpretation of sequencing results. A total of 211 children with LRTI admitted to the First Affiliated Hospital of Guangzhou Medical University from May 2019 to December 2020 were enrolled. The diagnostic performance of mNGS versus traditional methods for detecting pathogens was compared. The positive rate for the BALF mNGS analysis reached 95.48% (95% confidence interval [CI] 92.39% to 98.57%), which was superior to the culture method (44.07%, 95% CI 36.68% to 51.45%). For the detection of specific pathogens, mNGS showed similar diagnostic performance to PCR and antigen detection, except for Streptococcus pneumoniae, for which mNGS performed better than antigen detection. S. pneumoniae, cytomegalovirus and Candida albicans were the most common bacterial, viral and fungal pathogens. Common infections in children with LRTI were bacterial, viral and mixed bacterial-viral infections. Immunocompromised children with LRTI were highly susceptible to mixed and fungal infections. The initial diagnosis was modified based on mNGS in 29.6% (37/125) of patients. Receiver operating characteristic (ROC) curve analysis was performed to predict the relationship between inflammation indicators and the type of pathogen infection. BALF mNGS improves the sensitivity of pathogen detection and provides guidance in clinical practice for diagnosing LRTI in children.


Assuntos
Bacteriófagos , Infecções Respiratórias , Humanos , Criança , Líquido da Lavagem Broncoalveolar , Infecções Respiratórias/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala , Streptococcus pneumoniae , Metagenômica , Sensibilidade e Especificidade
10.
Virus Res ; 319: 198860, 2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-35817094

RESUMO

Norovirus is a leading cause of viral gastroenteritis outbreaks worldwide, with GII.4 responsible for the majority of infections. Minor capsid protein VP2 has been found to have functions such as stabilizing virus particles, and VP2 is one of the highly variable proteins of norovirus, similar to major capsid protein VP1. However, whether the variation of VP2 is functionally driven still remains unclear. In this study, VP2 showed a higher evolutionary rate (2.642×10-3 substitutions/site/year) than VP1 (1.587×10-3 substitutions/site/year), and a hypervariable region in VP2 in a serial of norovirus GII.4 over the past 50 years had been observed. Notably, the high variation of VP2 was not haphazard. The evolutionary process of VP2 is similar to that of VP1 with comparable topologies when the phylogenetic trees were constructed. Moreover, VP2 was found to interact with VP1 among epidemic variants of GII.4 using the yeast two-hybrid experiments. The results of interactions were grouped into time-adjacent (e.g. Ancestral-VP1 plus US95-VP2) and non-adjacent (e.g. Ancestral-VP1 plus Sydney-VP2) according to the epochal chronologically based prevalence of GII.4 norovirus. Interestingly, the interaction of the former group was significantly stronger than that of the latter group (P=0.0001). Furthermore, the interaction regions on VP2 (residues 131-160 and 171-180) were mapped to the hypervariable region. And these interaction regions did show an important role in the evolutionary process of VP2, which was consistent with that of VP1. In summary, the minor capsid protein VP2 of GII.4 noroviruses had shown the epochal coevolution with VP1 based on their interactions over the past 50 years. The findings of this study provided valuable information for further understanding and completing the evolutionary mechanism of norovirus.


Assuntos
Infecções por Caliciviridae , Norovirus , Infecções por Caliciviridae/epidemiologia , Proteínas do Capsídeo/metabolismo , Surtos de Doenças , Genótipo , Humanos , Norovirus/química , Filogenia
11.
Infect Genet Evol ; 100: 105265, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35272046

RESUMO

Norovirus is a major cause of acute gastroenteritis worldwide. Like the major capsid protein (VP1), the minor capsid protein (VP2) also contains a hypervariable domain. Generally, a hypervariable domain is functionally driven. However, many functions of VP2 remain unknown and worth exploring. Without sufficient sequences and an available crystallographic model, it is difficult to explore VP2's mysteries. As a helper of stabilizing and coordinating the formation of virus-like particles (VLPs), we asked whether VP2 interacted with the major capsid protein (VP1) in GII.17 and if so, what the key interaction residues were. Here, we reported cross-interaction among four strains represented four clusters of GII.17, and the VP1 interaction domain of VP2 (174-179aa) was found. However, the VP1 interaction domain of VP2 was not universal in different clusters of GII.17. VP2 might evolve in a different pattern from VP1. Additionally, in contrast to previous reports, we found that VP2 localized in the cytoplasm. More possibilities of VP2 should be further explored.


Assuntos
Gastroenterite , Norovirus , Proteínas do Capsídeo/química , Humanos , Norovirus/genética
12.
Gut Pathog ; 14(1): 31, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879724

RESUMO

The emergence of the novel GII.17 Kawasaki 2014 norovirus variant raising the interest of the public, has replaced GII.4 as the predominant cause of noroviruses outbreaks in East Asia during 2014-2015. Antigenic variation of the capsid protein is considered as one of the key mechanisms of norovirus evolution. In this study, we screened a panel of GII.17 mutants. First, we produced norovirus P proteins using cell-free protein synthesis (CFPS) system, comparing the results to pure proteins expressed in a cell-based system. Next, we determined the binding capability of specific monoclonal antibody (mAb) 2D11 using a unique set of wild-type GII.17 strains. Results of the EIA involving a panel of mutant cell-free proteins indicated that Q298 was the key residue within loop 1. These data highlighted the essential residues in the linear antibody binding characteristics of novel GII.17. Furthermore, it supported the CFPS as a promising tool for rapidly screening mutants via the scalable expression of norovirus P proteins.

13.
Infect Genet Evol ; 96: 105091, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34610432

RESUMO

BACKGROUND: Norovirus is a leading cause of viral gastroenteritis outbreaks worldwide. Histo-blood group antigens (HBGAs) are important host attachment factors in susceptibility to norovirus. In this study, the association of FUT2 gene, which participates in the biosynthesis of HBGAs, with norovirus infection has been investigated. METHODS: All relevant studies on the associations of FUT2 gene with norovirus were retrieved from PubMed, Web of Science, Embase, and Cochrane Library databases. Odds ratios (ORs) and 95% confidence interval (CI) were used to analyze the extracted data. I2 statistic, sensitivity analysis and publication bias analysis were used to confirm the findings. Subgroup analyses were performed for races, genotypes, development degree of the countries, publication years, age and setting when heterogeneity was recorded. RESULTS: Twenty studies including 4066 participants were included for the meta-analysis. This analysis showed that there is a significant association between FUT2 gene and norovirus infection (OR = 3.02, 95%CI = 2.00-4.55, P < 0.001). Additionally, the ORs of norovirus infection among Chinese (OR = 4.49, 95%CI = 2.37-8.50, P < 0.001) were higher than those among Caucasian (OR = 3.23, 95%CI = 2.20-4.74, P < 0.001). CONCLUSIONS: The meta-analysis suggested that FUT2 gene is associated with susceptibility to norovirus infection.


Assuntos
Antígenos de Grupos Sanguíneos/metabolismo , Infecções por Caliciviridae/genética , Fucosiltransferases/genética , Predisposição Genética para Doença , Infecções por Caliciviridae/virologia , Fucosiltransferases/metabolismo , Humanos , Norovirus/fisiologia , Galactosídeo 2-alfa-L-Fucosiltransferase
14.
Front Microbiol ; 12: 715568, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589072

RESUMO

The nosocomial pathogen Acinetobacter baumannii is a frequent cause of healthcare-acquired infections, particularly in critically ill patients, and is of serious concern due to its potential for acquired multidrug resistance. Whole-genome sequencing (WGS) is increasingly used to obtain a high-resolution view of relationships between isolates, which helps in controlling healthcare-acquired infections. Here, we conducted a retrospective study to identify epidemic situations and assess the percentage of transmission in intensive care units (ICUs). Multidrug-resistant A. baumannii (MDR-AB) were continuously isolated from the lower respiratory tract of different patients (at the first isolation in our ICU). We performed WGS, pulsed-field gel electrophoresis (PFGE), and multilocus-sequence typing (MLST) analyses to elucidate bacterial relatedness and to compare the performance of conventional methods with WGS for typing MDR-AB. From June 2017 to August 2018, A. baumannii complex strains were detected in 124 of 796 patients during their ICU stays, 103 of which were MDR-AB. Then we subjected 70 available MDR-AB strains to typing with WGS, PFGE, and MLST. Among the 70 A. baumannii isolates, 38 (54.29%) were isolated at admission, and 32(45.71%) were acquisition isolates. MLST identified 12 unique sequence types, a novel ST (ST2367) was founded. PFGE revealed 16 different pulsotypes. Finally, 38 genotypes and 23 transmissions were identified by WGS. Transmission was the main mode of MDR-AB acquisition in our ICU. Our results demonstrated that WGS was a discriminatory technique for epidemiological healthcare-infection studies. The technique should greatly benefit the identification of epidemic situations and controlling transmission events in the near future.

15.
Pathogens ; 10(8)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34451450

RESUMO

Human norovirus (HuNoV), which is the major causative agent of acute gastroenteritis, has broad antigenic diversity; thus, the development of a broad-spectrum vaccine is challenging. To establish the relationship between viral genetic diversity and antigenic diversity, capsid P proteins and antisera of seven GI and 16 GII HuNoV genotypes were analyzed. Enzyme-linked immunosorbent assays showed that HuNoV antisera strongly reacted with the homologous capsid P proteins (with titers > 5 × 104). However, 17 (73.9%) antisera had weak or no cross-reactivity with heterologous genotypes. Interestingly, the GII.5 antiserum cross-reacted with seven (30.4%) capsid P proteins (including pandemic genotypes GII.4 and GII.17), indicating its potential use for HuNoV vaccine development. Moreover, GI.2 and GI.6 antigens reacted widely with heterologous antisera (n ≥ 5). Sequence alignment and phylogenetic analyses of the P proteins revealed conserved regions, which may be responsible for the immune crossover reactivity observed. These findings may be helpful in identifying broad-spectrum epitopes with clinical value for the development of a future vaccine.

16.
Front Microbiol ; 12: 670488, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539594

RESUMO

Foodbone norovirus (NoV) is the leading cause of acute gastroenteritis worldwide. Candidate vaccines are being developed, however, no licensed vaccines are currently available for managing NoV infections. Screening for stimulated antibodies with broad-spectrum binding activities can be performed for the development of NoV polyvalent vaccines. In this study, we aimed to develop an indirect enzyme-linked immunosorbent assay (ELISA) for testing the broad spectrum of anti-NoV antibodies. Capsid P proteins from 28 representative NoV strains (GI.1-GI.9 and GII.1-GII.22 except GII.11, GII.18, and GII.19) were selected, prepared, and used as coating antigens on one microplate. Combined with incubation and the horseradish peroxidase chromogenic reaction, the entire process for testing the spectrum of unknown antibodies required 2 h for completion. The intra-assay and inter-assay coefficients of variation were less than 10%. The new method was successfully performed with monoclonal antibodies and polyclonal antibodies induced by multiple antigens. In conclusion, the indirect ELISA assay developed in this study had a good performance of reliability, convenience, and high-throughput screening for broad-spectrum antibodies.

17.
Front Microbiol ; 12: 653719, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33889144

RESUMO

Human norovirus is regarded as the leading cause of epidemic acute gastroenteritis with GII.4 being the predominant genotype during the past decades. In the winter of 2014/2015, the GII.17 Kawasaki 2014 emerged as the predominant genotype, surpassing GII.4 in several East Asian countries. Hence, the influence of host immunity response on the continuous evolution of different GII.17 variants needs to be studied in depth. Here, we relate the inferences of evolutionary mechanisms of different GII.17 variants with the investigation of cross-reactivity and cross-protection of their respective antisera using the expression of norovirus P particles in Escherichia coli. The cross-reactivity assay showed that the antisera of previous strains (GII.17 A and GII.17 B) reacted with recent variants (GII.17 C and GII.17 D) at high OD values from 0.8 to 1.16, while recent variant antisera cross-reacting with previous strains were weak with OD values between 0.26 and 0.56. The cross-protection assay indicated that the antisera of previous strains had no inhibitory effect on recent variants. Finally, mutations at amino acids 353-363, 373-384, 394-404, and 444-454 had the greatest impact on cross-reactivity. These data indicate that the recent pandemic variants GII.17 C and GII.17 D avoided the herd immunity effect of previous GII.17 A and GII.17 B strains through antigenic variation.

18.
Infect Genet Evol ; 73: 362-367, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31146046

RESUMO

Human sapovirus is regarded as an important viral agent for acute diarrhea worldwide. GII.8, a recently reported genotype, has been detected in a few countries and regions. In this study, we obtained the first genome sequence of a sapovirus GII.8 strain isolated in mainland China, and comprehensively analyzed the genetic diversity and evolutionary process of this genotype. The viral genome of the new GII.8 Guangzhou strain GZ2014-L231 comprised 7433 nucleotides, including two ORFs. Pairwise alignments of the new genome with representative sequences of different genotypes showed inconsistent homology between different protein-encoding regions, of which NS1 and VP2 were found as the variable proteins, and NS3, NS5, and NS6/7 were found as the conserved ones. Compared with other reported GII.8 genomes, the Guangzhou strain introduced 34 new nucleotide changes and one new amino acid change. Phylogenetic analysis based on full-length VP1 sequences demonstrated that 11 GII.8 strains could be divided into 4 clusters A-D, with 88 SNP and 10 SAP spots occurred during their evolutionary process. The Guangzhou strain has higher homology with seven GII.8 strain detected after 2014, especially the US and Peruvian strains of 2015/2016, which have the identical VP1 amino acid sequences. Using a Bayesian coalescent method based on VP1 sequences, GII.8 was predicted to emerge in 2001 with the evolution rate of 1.45 × 10-3 nucleotide substitutions/site/year (strict clock). In summary, the data in this study not only provided reference data from mainland China for sapovirus researches in future, but also firstly described the evolutionary process of the GII.8 genotype.


Assuntos
Variação Genética/genética , Sapovirus/genética , Sequência de Aminoácidos/genética , Teorema de Bayes , Infecções por Caliciviridae/virologia , Proteínas do Capsídeo/genética , China , Diarreia/virologia , Evolução Molecular , Gastroenterite/virologia , Genoma Viral/genética , Genótipo , Humanos , Fases de Leitura Aberta/genética , Filogenia , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA