Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161274

RESUMO

A progenitor cell could generate a certain type or multiple types of descendant cells during embryonic development. To make all the descendant cell types and developmental trajectories of every single progenitor cell clear remains an ultimate goal in developmental biology. Characterizations of descendant cells produced by each uncommitted progenitor for a full germ layer represent a big step toward the goal. Here, we focus on early foregut endoderm, which generates foregut digestive organs, including the pancreas, liver, foregut, and ductal system, through distinct lineages. Using unbiased single-cell labeling techniques, we label every individual zebrafish foregut endodermal progenitor cell out of 216 cells to visibly trace the distribution and number of their descendant cells. Hence, single-cell-resolution fate and proliferation maps of early foregut endoderm are established, in which progenitor regions of each foregut digestive organ are precisely demarcated. The maps indicate that the pancreatic endocrine progenitors are featured by a cell cycle state with a long G1 phase. Manipulating durations of the G1 phase modulates pancreatic progenitor populations. This study illustrates foregut endodermal progenitor cell fate at single-cell resolution, precisely demarcates different progenitor populations, and sheds light on mechanistic insights into pancreatic fate determination.


Assuntos
Ciclo Celular , Endoderma/citologia , Pâncreas/citologia , Análise de Célula Única , Células-Tronco/citologia , Peixe-Zebra/embriologia , Animais , Linhagem da Célula , Proliferação de Células , Fase G1 , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Proteínas de Peixe-Zebra/metabolismo
2.
Crit Rev Food Sci Nutr ; : 1-29, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37811663

RESUMO

BACKGROUND: Milk proteins (MPs) have been widely used in the food industry due to their excellent functionalities. However, MPs are thermal-unstable substances and their functional properties are easily affected by heat treatment. Emerging non-thermal approaches (i.e., high-pressure homogenization (HPH), ultrasound (US), pulsed electric field (PEF)) have been increasingly popular. A detailed understanding of these approaches' impacts on the structure and functionalities of MPs can provide theoretical guidance for further development to accelerate their industrialization. SCOPE AND APPROACH: This review assesses the mechanisms of HPH, US and PEF technologies on the structure and functionalities of MPs from molecular, mesoscopic and macroscopic levels, elucidates the modifications of MPs by these theologies combined with other methods, and further discusses their existing issues and the development in the food filed. KEY FINDINGS AND CONCLUSIONS: The structure of MPs changed after HPH, US and PEF treatment, affecting their functionalities. The changes in these properties of MPs are related to treated-parameters of used-technologies, the concentration of MPs, as well as molecular properties. Additionally, these technologies combined with other methods could obtain some outstanding functional properties for MPs. If properly managed, these theologies can be tailored for manufacturing superior functional MPs for various processing fields.

3.
J Sci Food Agric ; 103(4): 1846-1855, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36347624

RESUMO

BACKGROUND: The protein-polyphenol interaction mechanism has always been a research hotspot, but their interaction is affected by heat treatment, which is widely applied in food processing. Moreover, the effects of microwave or water-bath heating on the protein-polyphenol interaction mechanism have been not clarified. The pasteurization condition (65 °C, 30 min) was selected to compare the effects of microwave or water bath on binding behavior, structure, and cell proliferation between α-lactalbumin (α-LA) and safflower yellow (SY), thus providing a guide for the selection of functional dairy processing conditions. RESULTS: Microwave heat treatment of α-LA-SY resulted in stronger fluorescence quenching than that of conventional heat treatment. Moreover, the binding constant Ka of all α-LA-SY samples was augmented significantly after microwave or water bath treatment, and microwave-heated α-LA-SY showed the maximum Ka . Fourier transform infrared spectroscopy showed that microwave heating resulted in more ordered structures of α-LA into its disordered structures than water bath heating. However, the ferric reducing antioxidant power and chroma value of α-LA-SY were more reduced by microwave heating than by water bath heating. Moreover, microwave heating facilitated the cell proliferation of α-LA-SY compared with water bath treatment. CONCLUSION: It was demonstrated that microwave heating promoted interaction between α-LA and SY more than water bath heating did. Microwave heat treatment was a safe and effective way to enhance the binding affinity of α-LA to SY, being a potential application in food industry. © 2022 Society of Chemical Industry.


Assuntos
Lactalbumina , Micro-Ondas , Lactalbumina/química , Calefação , Temperatura Alta , Fatores de Transcrição , Proliferação de Células , Água
4.
J Sci Food Agric ; 103(7): 3550-3557, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36789528

RESUMO

BACKGROUND: Soybean oil bodies (SOB) are droplets of natural emulsified oil. Soybean oil emulsifies well but it is easily oxidized during storage. Beet pectin is a complex anionic polysaccharide, which can be adsorbed on the surface of liposomes to improve their resistance to flocculation. Laccase can covalently cross-link ferulic acid in beet pectin, and its structure is irreversible, which can improve the stability of polysaccharides. RESULTS: At pH 2.5, laccase cross-linked beet pectin high-oil soybean oil body (HOSOB) and high-protein soybean oil body (HPSOB) emulsions showed obvious aggregation and severe stratification, and the oxidation of the emulsions was also high. The flocculation of emulsions decreased with an increase in the pH. The effect of pH on the flocculation of emulsion was confirmed by confocal laser electron microscopy. The ζ potential, emulsification, and rheological shear force increased with increasing pH whereas the particle size and surface hydrophobicity decreased with increasing pH. CONCLUSION: This experiment indicates that the physicochemical stability of the two composite emulsions was strongly affected under acidic conditions but stable under neutral and weakly alkaline conditions. Under the same acid-base conditions, the degree of oxidation of HPSOB composite emulsion changes substantially. The results of this study can provide a basis for the design of very stable emulsions to meet the demand for natural products. © 2023 Society of Chemical Industry.


Assuntos
Beta vulgaris , Pectinas , Antioxidantes , Beta vulgaris/química , Emulsões/química , Lacase , Gotículas Lipídicas , Tamanho da Partícula , Pectinas/química , Polissacarídeos , Proteínas , Óleo de Soja/química , Glycine max , Oxirredução , Fenômenos Químicos
5.
J Sci Food Agric ; 103(8): 3961-3969, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36397255

RESUMO

BACKGROUND: Tofu is rich in nutrients and contains high-quality protein. However, commercial tofu products usually have weak gel strength and low water holding capacity (WHC). In the present study, the effects of selective thermal denaturation (STD) time (0-20 min, 5-min interval; 85 °C) and glycosylation (100 °C; 0, 10 and 20 g kg-1 glucose) on the quality characteristics of green soybean tofu were studied through by the evaluation method of the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) model for the best synergism condition of STD and glycosylation. RESULTS: Compared to STD or glycosylation, combination treatment of STD and glycosylation improved hardness, WHC, yield, protein and fat contents of green soybean tofu. Furthermore, the gel strength, WHC, yield, protein and fat contents of tofu was increased by 135.21%, 20.18%, 12.21%, 24.91%, 44.15% compared to untreated tofu. Meanwhile, synergistic treatment of STD and glycosylation significantly improved microstructure network structure of green soybean tofu and made it more homogeneous and denser. However, the green soybean tofu was faded and turned yellow under the combination of the STD and glycosylation. CONCLUSION: The results obtained through TOPSIS showed that the combination of thermal treatment (85 °C for 15 min) and glycosylation (20 g kg-1 glucose at 100 °C) had the greatest improvement in the characteristics of green soybean tofu. Hence, the combination treatment of STD and glycosylation should be useful for improving the quality characteristics of green soybean tofu and providing the technical references for industrial processing of tofu. © 2022 Society of Chemical Industry.


Assuntos
Manipulação de Alimentos , Alimentos de Soja , Manipulação de Alimentos/métodos , Glycine max/química , Glicosilação , Alimentos de Soja/análise , Proteínas de Soja/química
6.
J Sci Food Agric ; 103(3): 1588-1592, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36318369

RESUMO

BACKGROUND: Goat milk has balanced nutritional composition, is conducive to digestion and absorption, and does not easily lead to allergic reactions. However, the special goaty flavor in milk has seriously affected consumer acceptance. It is imperative to alleviate the goaty flavor in a safe and efficient way. RESULTS: This study indicated that the supplementation of 6 g kg-1 ß-cyclodextrin or 8 g kg-1 lactitol in goat milk significantly alleviated goaty flavor and improved sensory characteristics. Furthermore, the supplementation of ß-cyclodextrin and lactitol had a synergistic effect in reducing the content of free fatty acids that cause goaty flavor. The content of caproic acid (C6 H12 O2 ), octanoic acid (C8 H6 O2 ), and decanoic acid (C10 H20 O2 ) decreased by 42.46%, 39.45%, and 46.41%, respectively, after a combined group was supplemented with 6 g kg-1 ß-cyclodextrin and 7 g kg-1 lactitol, which was significantly lower than in groups given ß-cyclodextrin or lactitol individually. CONCLUSION: This study provides a novel and effective approach to alleviate goaty flavor and promote the competitiveness of goat milk products. © 2022 Society of Chemical Industry.


Assuntos
Paladar , beta-Ciclodextrinas , Animais , Cabras , Leite/química , Ácidos Graxos/química
7.
J Dairy Sci ; 105(1): 83-96, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34635352

RESUMO

This research aimed to advance the understanding of acceptable sensory qualities of potable whey-based spirit from nonsupplemented, mid-supplemented, and high-supplemented whey samples by analyzing major volatile compounds during different stages of distillation (head, heart, and tail). The results demonstrated that commercial Saccharomyces cerevisiae strain in lactase-hydrolyzed whey showed rapid and complete sugar hydrolysis and efficient ethanol production in 24, 30, and 36 h on average, producing up to 29.5, 42.1, and 56.4 g/L of ethanol, respectively. The variations in titratable acidity, specific gravity, pH value, residual protein, sugar content, and alcohol yield were investigated during the fermentation. The total amount of volatile compound concentrations significantly decreased from the head (2,087-2,549 mg/L) to the tail whey spirits (890-1,407 mg/L). In the whey spirit, 2-methyl-1-butanol, 3-methyl-1-butanol, 2-methyl-1-propanol, 1-propanol, acetaldehyde, and ethyl acetate were the most prevalent dominant compounds, accounting for the largest proportion of total volatile compounds. The volatile compounds detected were far below the acceptable legal limit. The results suggest that high sensory qualities of potable whey-based spirits can be produced by fermentation of lactose-supplemented whey with S. cerevisiae cells.


Assuntos
Lactose , Soro do Leite , Animais , Destilação , Fermentação , Saccharomyces cerevisiae , Proteínas do Soro do Leite
8.
J Sci Food Agric ; 102(11): 4909-4917, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35246844

RESUMO

BACKGROUND: Oil bodies (OBs) are a kind of natural and stable oil nucleate microcapsule in which the triglyceride matrix can be used as an appropriate carrier of hydrophobic molecules. Astaxanthin has high antioxidant properties but is extremely sensitive to oxidation, causing the loss of its bioactive properties. RESULTS: The purpose of this study was to clarify the effects of environmental factors (light, oxygen, temperature, and pH) on the physical and oxidative stability of astaxanthin microcapsules prepared with peanut oil bodies (POBs). After 14 days of storage, the retention rate of astaxanthin in peanut oil microcapsules (POMs) was significantly increased. The astaxanthin retention rate of POMs stored under light conditions was higher than under dark conditions. Similarly, the retention rate of astaxanthin in POMs was significantly increased during vacuum storage. The astaxanthin retention rate was also the highest when POMs were stored at 4 °C, whereas it was the lowest at pH 3.0. CONCLUSION: The experiment demonstrated that microcapsulation could improve the astaxanthin retention rate and storage stability, and recombinant OBs were potential ideal wall materials for astaxanthin embedding. © 2022 Society of Chemical Industry.


Assuntos
Lipossomos , Xantofilas , Cápsulas/química , Estresse Oxidativo , Xantofilas/química
9.
J Sci Food Agric ; 102(9): 3752-3761, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34913174

RESUMO

BACKGROUND: Soybean oil bodies (SOB) are naturally pre-emulsified lipid droplets recovered directly from soybean seeds. Almost all food emulsions contain salts. However, it was not clear how the incorporation of salts affected the physicochemical stability of SOB. RESULTS: This study investigated the effect of NaCl (0-1.2%) on the physical and oxidative stability of SOB emulsions under neutral (pH 7) and acidic (pH 3) conditions. In the presence of NaCl, the SOB emulsion (pH 7) showed strong flocculation during storage due to electrostatic screening. The NaCl-induced flocculation of SOB was attenuated at pH 3, which may be due to the difference in conformation or interaction of the protein interfaces covering SOB at different pH values. The increase in ionic strength or acid conditioning treatment resulted in a remarkable increase in the stability of SOB emulsions against coalescence. The confocal laser scanning microscopy images also confirmed the NaCl-induced changes in the flocculation/coalescence properties of SOB. The oxidative behavior tests indicated that SOB emulsions containing NaCl were more susceptible to lipid oxidation but protein oxidation was inhibited due to electrostatic screening, which reduced pro-oxidant accessibility of unadsorbed proteins in the emulsion. This oxidative behavior was attenuated at pH 3. CONCLUSION: The incorporation of NaCl significantly reduced the physical and oxidative stability of the SOB emulsion, and acidic pH mitigated NaCl-induced flocculation and lipid oxidation of SOB. © 2021 Society of Chemical Industry.


Assuntos
Cloreto de Sódio , Óleo de Soja , Emulsões/química , Floculação , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Proteínas/química , Sais , Cloreto de Sódio/química , Água/química
10.
J Nanobiotechnology ; 19(1): 456, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34963471

RESUMO

BACKGROUND: Carbon dots (CDs) are widely used in cell imaging due to their excellent optical properties, biocompatibility and low toxicity. At present, most of the research on CDs focuses on biomedical application, while there are few studies on the application of microbial imaging. RESULTS: In this study, B- and N-doped carbon dots (BN-CDs) were prepared from citric acid, ethylenediamine, and boric acid by microwave hydrothermal method. Based on BN-CDs labeling yeast, the dead or living of yeast cell could be quickly identified, and their growth status could also be clearly observed. In order to further observe the morphology of yeast cell under different lethal methods, six methods were used to kill the cells and then used BN-CDs to label the cells for imaging. More remarkably, imaging of yeast cell with ultrasound and antibiotics was significantly different from other imaging due to the overflow of cell contents. In addition, the endocytosis mechanism of BN-CDs was investigated. The cellular uptake of BN-CDs is dose, time and partially energy-dependent along with the involvement of passive diffusion. The main mechanism of endocytosis is caveolae-mediated. CONCLUSION: BN-CDs can be used for long-term stable imaging of yeast, and the study provides basic research for applying CDs to microbiol imaging.


Assuntos
Carbono/química , Imagem Óptica/métodos , Pontos Quânticos/química , Saccharomyces cerevisiae/citologia , Ácidos Bóricos/química , Ácidos Bóricos/metabolismo , Carbono/metabolismo , Ácido Cítrico/química , Ácido Cítrico/metabolismo , Endocitose , Etilenodiaminas/química , Etilenodiaminas/metabolismo , Fluorescência , Temperatura Alta , Viabilidade Microbiana , Micro-Ondas , Pontos Quânticos/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo
11.
J Dairy Sci ; 104(10): 10628-10639, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34304873

RESUMO

The effect of ultrasound (US) pretreatment (0, 200, 400, 600, and 800 W) on the physicochemical, emulsification, and gelatinization characteristics of citric acid (CA)-treated whey protein isolate (WPI) was investigated. Size exclusion chromatography demonstrated that when compared with untreated WPI, US pretreatment promoted production of more molecular polymers in the CA-treated WPI. There was a reduction in particle size of CA-treated WPI with the increase of US power (0-800 W), whereas its free sulfhydryl content, surface hydrophobicity, and intrinsic fluorescence strength increased. Furthermore, compared with untreated WPI, emulsifying ability index and emulsifying stability index of CA-treated WPI were increased by 14.04% and 10.10%, respectively, at 800 W. Accordingly, US pretreatment promoted the gel formation of CA-treated WPI, and its gel hardness was increased by 28.0% with US power ranging from 0 to 800 W. Therefore, US and CA treatment can be considered as an effective way to improve the emulsifying and gelatinization characteristics of WPI.


Assuntos
Ácido Cítrico , Animais , Cromatografia em Gel/veterinária , Emulsões , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Proteínas do Soro do Leite
12.
Molecules ; 23(9)2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-30231489

RESUMO

The effects of citric acid-mediated cross-linking under non-acidic conditions on the surface hydrophobicity, solubility, emulsifying, and foaming properties of whey protein isolate (WPI) were investigated. In this research, citric acid-mediated cross-linking could not only increase the surface hydrophobicity of whey proteins at pH 7.0 and 8.0, but it also improved its emulsifying and foaming properties. The emulsifying activity and foaming ability of WPI reached a maximum under the condition of 1% citric acid and pH 7.0. However, the solubility of WPI-CA gradually decreased with pH and the content of citric acid increased. Therefore, the cross-linking mediated by citric acid under non-acidic aqueous conditions, markedly altered the surface hydrophobicity and enhanced emulsifying and foaming properties of WPI.


Assuntos
Ácido Cítrico/química , Proteínas do Soro do Leite/química , Proteínas do Soro do Leite/isolamento & purificação , Emulsões/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Solubilidade , Propriedades de Superfície
13.
J Sci Food Agric ; 98(4): 1522-1529, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28802019

RESUMO

BACKGROUND: The aim of this study was to investigate the effects of ultrasound applied at various powers (0, 200, 400, 600 or 800 W) and for different times (20 or 40 min) on the physico-chemical, functional properties and antioxidant activities of whey protein isolate (WPI) dispersions in the presence of 1.20 mmol L-1 calcium lactate. RESULTS: Surface hydrophobicity and free sulfhydryl group of the WPI dispersions containing 1.2 mmol L-1 calcium lactate were significantly enhanced after sonication. Furthermore, particle size of WPI dispersions containing 1.20 mmol L-1 calcium lactate was minimised after sonication. Scanning electron microscopy of sonicated WPI suspensions containing 1.20 mmol L-1 calcium lactate showed that WPI microstructure had significantly changed. After WPI dispersions were treated by sonication assisted with calcium lactate, its gel strength enhanced and solubility decreased. Gel strength of sonicated WPI dispersions (600 W, 40 min) was the maximum among all the WPI treatments. Emulsification activity of sonicated WPI dispersions reduced while its emulsion stability increased. The DPPH radical scavenging activity and ferrous reducing power of sonicated WPI dispersions mostly increased. CONCLUSION: Ultrasound treatments induced structural changes in WPI molecules, leading to different microstructure and improved gel strength of WPI in the presence of calcium lactate. © 2017 Society of Chemical Industry.


Assuntos
Antioxidantes/química , Sonicação/métodos , Proteínas do Soro do Leite/química , Animais , Antioxidantes/isolamento & purificação , Compostos de Cálcio/química , Bovinos , Emulsões/química , Interações Hidrofóbicas e Hidrofílicas , Lactatos/química , Tamanho da Partícula , Solubilidade , Proteínas do Soro do Leite/isolamento & purificação
14.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 34(4): 572-577, 2017 08 25.
Artigo em Zh | MEDLINE | ID: mdl-29745554

RESUMO

The objective of the study is to analyze the biological characteristics and stability of the linear derivative Bac2a from bactenecin, compared with the control peptide melittin. The secondary structure, antibacterial activity, hemolytic activity, cell toxicity and stability of the Bac2a were determined by circular dichroism spectroscopy, broth micro-dilution method and MTT assay. The results showed that Bac2a was a nonregular curl in aqueous solution, however, it was an α-helix structure in the hydrophobic environment. The minimal inhibitory concentration (MIC) of Bac2a ranged from 2 to 32 µmol/L, so the bacteriostatic activity of Bac2a was strong. The hemolytic rate was only 14.81% when the concentration of Bac2a was 64 µmol/L, which showed that the hemolytic rate of Bac2a was low. The therapy index of Bac2a was 3.26, and the cytotoxicity was relatively low, thus the cell selectivity was relatively high. In addition, with the heating treatment of 100℃ for 1 h, Bac2a still possessed rather a high antibacterial activity and showed a good heating stability. In a word, Bac2a has good application prospects in food, medicine and other fields, and is expected as a substitute for traditional antibiotics.

15.
Food Res Int ; 192: 114764, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147556

RESUMO

Protein emulsion gels, as potential novel application ingredients in the food industry, are very unstable in their formation. However, the incorporation of sour substances (phosphoric acid, lactic acid, acetic acid, malic acid, glutamic acid, tartaric acid and citric acid) would potentially contribute to the stable formation of whey protein isolate (WPI) emulsion as well as its gel. Thus, in this work, physical stability of seven acid-treated WPI emulsions, and microstructures, rheological properties, water distribution of its emulsion gels were characterized and compared. Initially, the absolute zeta-potential, interfacial protein adsorption, and emulsifying characteristics of acid-induced WPI emulsions were higher in contrast to acid-untreated WPI emulsions. Moreover, acid-induced WPI emulsions were thermally induced (95 ℃, 30 min) to form its emulsion gel networks via disulfide bonds as the main force (acid-untreated WPI emulsions were unable to form gels). High-resolution microscopic observation revealed that acid-induced WPI in emulsion gel network showed the morphology of aggregates. Dynamic oscillatory rheology results indicated that acid-induced emulsion gel exhibited highly elastic behavior and its viscoelasticity was associated with the generation of protein gel networks and aggregates. In addition, PCA and heatmap results further illustrated that malic acid-induced WPI emulsion gels had the best water holding capacity and gel characteristics. Therefore, this study could provide an effective way for the foodstuffs industry to open up new texture and healthy emulsion gels as fat replaces and loading systems of bioactive substances.


Assuntos
Emulsões , Géis , Temperatura Alta , Reologia , Proteínas do Soro do Leite , Proteínas do Soro do Leite/química , Emulsões/química , Géis/química , Viscosidade
16.
Food Chem ; 457: 140096, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38905830

RESUMO

The research explored the role of γ-oryzanol (γs) on stabilization behavior of Pickering emulsion gels (PEGs) loaded by α-lactalbumin (α-LA) or ß-lactoglobulin (ß-LG), being analyzed by experimental and computer methods (molecular dynamic simulation, MD). Primarily, the average particle size of ß-LG-γS was expressed 100.07% decrease over that of α-LA-γS. In addition, γs decreased the dynamic interfacial tension of two proteins with the order of ß-LG < α-LA. Meanwhile, quartz crystal microbalance with dissipation proved that ß-LG-γS exhibited higher adsorption mass and denser rigid interface layer than α-LA-γS. Moreover, the hydrophobic group of γS had electrostatic repulsion with polar water molecules in the aqueous phase, which spread to the oil phase. ß-LG-γS had lower RMSD/Rg value and narrower fluctuation compared with α-LA-γS. This work strength the exploration of interfacial stabilization mechanism of whey protein-based PEGs, which enriched its theoretical research for industrial-scale production as the replacement of trans fat and cholesterol.


Assuntos
Emulsões , Géis , Lactalbumina , Lactoglobulinas , Fenilpropionatos , Lactalbumina/química , Lactoglobulinas/química , Emulsões/química , Fenilpropionatos/química , Géis/química , Simulação de Dinâmica Molecular , Tamanho da Partícula , Interações Hidrofóbicas e Hidrofílicas
17.
Int J Biol Macromol ; 272(Pt 2): 132937, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38848834

RESUMO

Over the past decade, Pickering emulsions (PEs) stabilized by protein particles have been the focus of researches. The characteristics of protein particles at the oil-water interface are crucial for stabilizing PEs. The unique adsorption behaviors of protein particles and various modification methods enable oil-water interface to exhibit controllable regulation strategies. However, from the perspective of the interface, studies on the regulation of PEs by the adsorption behaviors of protein particles at oil-water interface are limited. Therefore, this review provides an in-depth study on oil-water interfacial adsorption of protein particles and their regulation on PEs. Specifically, the formation of interfacial layer and effects of their interfacial characteristics on PEs stabilized by protein particles are elaborated. Particularly, complicated behaviors, including adsorption, arrangement and deformation of protein particles at the oil-water interface are the premise of affecting the formation of interfacial layer. Moreover, the particle size, surface charge, shape and wettability greatly affect interfacial adsorption behaviors of protein particles. Importantly, stabilities of protein particles-based PEs also depend on properties of interfacial layers, including interfacial layer thickness and interfacial rheology. This review provides useful insights for the development of PEs stabilized by protein particles based on interfacial design.


Assuntos
Emulsões , Óleos , Proteínas , Água , Emulsões/química , Adsorção , Água/química , Óleos/química , Proteínas/química , Tamanho da Partícula , Propriedades de Superfície , Reologia , Molhabilidade
18.
Food Chem X ; 23: 101739, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39263336

RESUMO

Impacts of co-cold extrusion (≤50 °C) of whey protein isolate (WPI) and cysteine (Cys, 0, 20, 40, 60, 80 and 100 mmol/L) on its physicochemical, in vitro digestion and rheological properties were investigated. As Cys concentration increased, the emulsifying properties and in vitro digestibility of co-extruded WPI-Cys products showed an increasing trend. Specifically, when Cys reached 100 mmol/L, surface hydrophobicity, emulsification activity index (EAI), emulsification stability index (ESI) and in vitro stomach digestibility of the co-extruded WPI-Cys products increased by 205.07%, 77.51%, 193.95% and 71.81% compared with WPI, respectively. Principal component analysis (PCA) results further indicated that co-extruded WPI-Cys at a concentration of 100 mmol/L had the best functional properties. In addition, co-extruded WPI-Cys exhibited the strongest Péclet number (Pe) value and apparent viscosity at a Cys concentration of 100 mmol/L among all samples. Therefore, co-extrusion would be an effective method for modifying WPI, providing whey protein-based ingredients with excellent functional properties for food processing.

19.
J Control Release ; 375: 20-46, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39214316

RESUMO

The microbiota at different sites in the body is closely related to disease. The intake of probiotics is an effective strategy to alleviate diseases and be adjuvant in their treatment. However, probiotics may suffer from harsh environments and colonization resistance, making it difficult to maintain a sufficient number of live probiotics to reach the target sites and exert their original probiotic effects. Encapsulation of probiotics is an effective strategy. Therefore, probiotic delivery systems, as effective methods, have been continuously developed and innovated to ensure that probiotics are effectively delivered to the targeted site. In this review, initially, the design of probiotic delivery systems is reviewed from four aspects: probiotic characteristics, processing technologies, cell-derived wall materials, and interactions between wall materials. Subsequently, the review focuses on the effects of probiotic delivery systems that target four main microbial colonization sites: the oral cavity, skin, intestine, and vagina, as well as disease sites such as tumors. Finally, this review also discusses the safety concerns of probiotic delivery systems in the treatment of disease and the challenges and limitations of implementing this method in clinical studies. It is necessary to conduct more clinical studies to evaluate the effectiveness of different probiotic delivery systems in the treatment of diseases.

20.
Int J Biol Macromol ; 279(Pt 3): 135346, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39242010

RESUMO

This study was conducted to develop a W/O/W emulsion encapsulated Lactobacillus plantarum 23-1 (LP23-1) to significantly enhance the survival rate of LP23-1 under simulated digestion and storage conditions. The zein particles and pectin formed a complex through electrostatic interaction and hydrogen bonding. When the proportion of zein particles to pectin was 1:1, the emulsifying stability index (ESI) was 304.17 %. Additionally, when the proportion of the internal aqueous phase to the oil phase was 1:9, the polyglycerol polyricinoleate (PGPR) concentration was 5 %, the proportion of primary emulsion to the external aqueous phase was 5:5, the zein particles concentration was 4 %, and the proportion of zein particles to pectin was 1:1, the encapsulation rate was the highest at 96.27 %. Cryo-scanning electron microscopy and fluorescence microscopy confirmed the morphology of W/O/W emulsion and successful encapsulation of LP23-1. Furthermore, compared with free LP23-1, the W/O/W emulsion encapsulation significantly improved the survival rate of LP23-1 to 73.36 % after simulated gastrointestinal digestion and maintained a high survival rate of 78.42 % during the 35-day storage. The W/O/W emulsion was found to effectively improve the survival rate of LP23-1 during simulated digestion and storage, which has implications for the development of probiotic functional foods with elevated survival rates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA