Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(40): e2402652, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38838056

RESUMO

The optimization of metal-support interactions is used to fabricate noble metal-based nanoclusters with high activity for hydrogen evolution reaction (HER) in acid media. Specifically, the oxygen-defective Mn3O4 nanosheets supported Pt nanoclusters of ≈1.71 nm in diameter (Pt/V·-Mn3O4 NSs) are synthesized through the controlled solvothermal reaction. The Pt/V·-Mn3O4 NSs show a superior activity and excellent stability for the HER in the acidic media. They only require an overpotential of 19 mV to drive -10 mA cm-2 and show negligible activity loss at -10 and -250 mA cm-2 for >200 and >60 h, respectively. Their Pt mass activity is 12.4 times higher than that of the Pt/C and even higher than those of many single-atom based Pt catalysts. DFT calculations show that their high HER activity arises mainly from the strong metal-support interaction between Pt and Mn3O4. It can facilitate the charge transfer from Mn3O4 to Pt, optimizing the H adsorption on the catalyst surface and promoting the evolution of H2 through the Volmer-Tafel mechanism. The oxygen vacancies in the V·-Mn3O4 NSs are found to be inconducive to the high activity of the Pt/V·-Mn3O4 NSs, highlighting the great importance to reduce the vacancy levels in V·-Mn3O4 NSs.

2.
Small ; : e2406070, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39128138

RESUMO

This work reports a strategy that integrates the carbon nanotube (CNT) supporting, ultrathin carbon coating and oxygen defect generation to fabricate the RuO2 based catalysts toward the pH-universal hydrogen evolution reaction (HER) with high efficiencies. Specifically, the CNT supported RuO2 nanoparticles with ultrathin carbon loricae and rich oxygen vacancies at the surface (C@OV-RuO2/CNTs-325) have been synthesized. The C@OV-RuO2/CNTs-325 shows superior activities and excellent durability for the HER. It only requires overpotentials of 36.1, 18.0, and 19.3 mV to deliver -10 mA cm-2 in the acidic, neutral, and alkaline media, respectively. Its HER activities are comparable to that of the Pt/C in the acidic media but higher than those of the Pt/C in the neutral and alkaline media. The C@OV-RuO2/CNTs-325 shows excellent HER durability with no activity losses for > 500 h in the acidic, neutral or alkaline media at -250 mA cm-2. The density-functional-theory calculations indicate that the CNT supporting, the carbon coating, and the OVs can modulate the d-band centers of Ru, increasing the HER activities of C@OV-RuO2/CNTs-325, and stabilize the Ru atoms in the catalyst, increasing the durability of the C@OV-RuO2/CNTs-325. More interestingly, the C@OV-RuO2/CNTs-325 shows great potential for practical applications toward overall seawater splitting.

3.
Chem Rec ; 24(1): e202300206, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37736673

RESUMO

The development of sodium-ion battery (SIB) anodes is still hindered by their rapid capacity decay and poor rate capabilities. Although there have been some new materials that can be used to fabricate stable anodes, SIBs are still far from wide applications. Strategies like nanostructure construction and material modification have been used to prepare more robust SIB anodes. Among all the design strategies, the hollow structure design is a promising method in the development of advanced anode materials. In the past decade, research efforts have been devoted to modifying the synthetic route, the type of templates, and the interior structure of hollow structures with high capacity and stability. A brief introduction is made to the main material systems and classifications of hollow structural materials first. Then different morphologies of hollow structural materials for SIB anodes from the latest reports are discussed, including nanoboxes, nanospheres, yolk shells, nanotubes, and other more complex shapes. The most used templates for the synthesis of hollow structrual materials are covered and the perspectives are highlighted at the end. This review offers a comprehensive discussion of the synthesis of hollow structural materials for SIB anodes, which could be potentially of use to research areas involving hollow materials design for batteries.

4.
Small ; 19(46): e2304076, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37464549

RESUMO

Plasma treatment and reduction are used to synthesize Pt nanoparticles (NPs) on nitrogen-doped carbon nanotubes (p-Pt/p-NCNT) with a low Pt content. In particular, the plasma treatment is used to treat the NCNT to give it with more surface defects, facilitating a better growth of the Pt NPs, while the plasma reduction produces the Pt NPs with a reduced fraction of the surface atoms at the high oxidation states, increasing the catalytic activities of the p-Pt@p-NCNT. Even at the low Pt content (7.8 wt.%), the p-Pt@p-NCNT shows superior catalytic activities and good stabilities for methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR). The density functional theory (DFT) calculations indicate that the defects generated in the plasma treatment can help the growth of the Pt NPs on the NCNTs, leading to the stronger electronic coupling between Pt and NCNT and the increased stability of the catalyst. The plasma reduction can give the Pt NPs with optimized surface oxidation states, decreasing the energy barriers of the rate-determining steps for MOR and ORR. When used as the anode and cathode catalysts for the direct methanol fuel cells (DMFCs), the p-Pt@p-NCNT exhibits a higher maximum power density of 81.9 mW cm-2  at 80 °C and shows good durability.

5.
Sensors (Basel) ; 23(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37571595

RESUMO

Visual measurement methods are extensively used in various fields, such as aerospace, biomedicine, agricultural production, and social life, owing to their advantages of high speed, high accuracy, and non-contact. However, traditional camera-based measurement systems, relying on the pinhole imaging model, face challenges in achieving three-dimensional measurements using a single camera by one shot. Moreover, traditional visual systems struggle to meet the requirements of high precision, efficiency, and compact size simultaneously. With the development of light field theory, the light field camera has garnered significant attention as a novel measurement method. Due to its special structure, the light field camera enables high-precision three-dimensional measurements with a single camera through only one shot. This paper presents a comprehensive overview of light field camera measurement technologies, including the imaging principles, calibration methods, reconstruction algorithms, and measurement applications. Additionally, we explored future research directions and the potential application prospects of the light field camera.

6.
Small ; 18(30): e2201467, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35699694

RESUMO

This work reports an amorphization and partial desulfurization method to improve the performance of sulfide-based materials for Na+ storage. Specifically, the polypyrrole derived carbon coated amorphous substoichiometric tin sulfide supported on aminated carbon nanotubes (PPY-C@SnSx /ACNTs) with amorphized and substoichiometric tin sulfide (SnSx ) is synthesized by simply thermal annealing the PPY-C@SnS2 /ACNTs. The PPY-C@SnSx /ACNTs shows stable reversible capacities of 410.2 mAh g-1 for Na+ storage at 0.1 A g-1 and excellent rate capacities of 270.2, 235.5, 217.4, and 210.0 mAh g-1 at 5.0, 10.0, 20.0, and 30.0 A g-1 , respectively. Nearly zero drops on the reversible capacities can be observed when it is sodiated/desodiated at 2.0, 5.0, and 10.0 A g-1 for up to 1000, 6500, 8000 cycles, respectively. Its outstanding rate capacities and degradation-free cycling stabilities mainly arise from the amorphized and substoichiometric structure of SnSx , which improve the reversible capacities and Na+ diffusivities of the PPY-C@SnSx /ACNTs. The density functional theory (DFT) calculations indicate that the partial desulfurization can improve the electric conductivity and promote the sodiation/desodiation of SnSx . It explains why the PPY-C@SnSx /ACNTs can exhibit high performance for Na+ storage well.

7.
Org Biomol Chem ; 18(19): 3747-3753, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32367108

RESUMO

Hydroboration of 1,3-dienes can provide useful intermediates with multiple functionalities. However, achieving high regioselectivity is still a challenge. Recent experimental research studies indicate that this challenge could be overcome by the ligand effect. We made DFT calculations to elucidate the origin of ligand controlled regioselectivity in cobalt catalyzed hydroboration of 2-substituted 1,3-diene. The following conclusions have been reached: when using PHOX ((2-oxazolinyl)-phenyldiphenylphosphine) as the ligand, the favorable 1,4-selective oxidative hydrogen migration pathway was suggested to start with the rate-determining step of 1,4-selective oxidative hydrogen migration followed by reductive boryl migration. The unique 1,4-selectivity is proposed to be a result of the less steric hindrance between the substrate and the ligand PHOX. When dppp (1,3-bis-(diphenylphosphino)propane) is used as the ligand, the favorable pathway is proposed to be a 1,2-selective oxidative boryl migration pathway which involves 1,2-selective oxidative boryl migration and reductive hydrogen migration. Interestingly, another smaller-bite angle bisphosphine ligand dppe (1,2-bis(diphenylphosphino)ethane) favors the 1,4-selective oxidative boryl migration pathway. DFT calculations revealed that the preferred oxidative boryl migration pathway with both dppp and dppe is attributed to their electron-rich properties which accelerate the oxidative boryl migration step. The larger bite angle of dppp than that of dppe leads to bulkier steric hindrance and promotes 1,2-selective reductive hydrogen migration. On the other hand, for dppe with a smaller bite angle, the steric effect in the reductive hydrogen migration step is not dominant and 1,4-selective reductive hydrogen migration is favored. It is expected that the analysis of the ligand effect on the regioselectivity would enable further catalyst design.

8.
Phys Chem Chem Phys ; 22(10): 6011, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32123884

RESUMO

Correction for 'Predictable spectroscopic properties of type-II ZnTe/CdSe nanocrystals and electron/hole quenching' by Tongqing Long et al., Phys. Chem. Chem. Phys., 2019, 21, 5824-5833.

9.
Phys Chem Chem Phys ; 21(10): 5824-5833, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30806432

RESUMO

The spectroscopic properties of core/shell structured ZnTe/CdSe nanocrystals (NCs) have been systematically studied. By varying the ZnTe core diameter and the CdSe shell thickness, the absorption onset and the photoluminescence peak position of the ZnTe/CdSe NCs can be readily tuned over a wide range. The theoretical model based on an effective mass approximation demonstrates that the ZnTe/CdSe NCs have type II carrier localization in which the photoexcited electrons and holes are spatially separated and confined in the shell and core, respectively. The energetics of the conduction and valence bands and the bandgaps of the ZnTe/CdSe NCs are accurately predicted. The photoluminescent experiments show that electron quenchers having a large energy difference between their reduction potential and the lowest conduction band edge of the ZnTe/CdSe nanocrystals can completely quench the luminescence. Electron acceptors having a reduction potential only slightly below the conduction band edge partially quench the photoluminescence of the nanocrystals. In this case, the extent of quenching depends upon the thickness of the shell and the energy difference. Despite the confinement of photoexcited holes in the core, the photoluminescence could be still quenched by adsorbed hole quenchers. The extent of hole quenching depends upon the core size, the shell thickness and the oxidation potential of the quenchers. Basically, an increase in the core size and the shell thickness may lead to a decrease in the extent of hole quenching. The work presented here is of great interest since it can be extended to understand the spectroscopic properties and photoluminescence quenching behaviors of other core/shell semiconductor NCs.

10.
Small Methods ; 8(3): e2301342, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37997209

RESUMO

The carbon nanotubes (CNTs) supported amorphous Sb doped substoichiometric tin dulfide (Sb─SnSx ) with a carbon coating (the C/Sb─SnSx @CNTs-500) is reported to be an efficient anode material for K+ storage. The formation of the C/Sb─SnSx @CNTs-500 is simply achieved through the thermally induced desulfurization of tin sulfide via a controlled annealing of the C/Sb─SnS2 @CNTs at 500 °C. When used for the K+ storage, it can deliver stable reversible capacities of 406.5, 305.7, and 238.4 mAh g-1 at 0.1, 1.0, and 2.0 A g-1 , respectively, and shows no capacity drops when potassiated/depotassiated at 1.0 and 2.0 A g-1 for >3000 and 2400 cycles, respectively. Even at 10, 20, and 30 A g-1 , it can still deliver stable reversible capacities of 138.5, 85.1, and 73.8 mAh g-1 , respectively. The unique structure, which combines the advantageous features of carbon integration/coating, metal doping, and desulfurization-induced amorphous structure, is the main origin of the high performance of the C/Sb─SnSx @CNTs-500. Specifically, the carbon integration/coating can increase the electric conductivity and stability of the C/Sb─SnSx @CNTs-500. The density function theory calculation indicates that the Sb doping and the desulfurization can facilitate the potassiation and increase the electric conductivity of Sb─SnSx . Additionally, the desulfurization can increase the K+ diffusivity in Sb─SnSx .

11.
Adv Mater ; 36(13): e2306934, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38135663

RESUMO

The development of cost-effective catalysts for oxygen evolution reaction (OER) in acidic media is of paramount importance. This work reports that Sr-doped solid solution structural ultrafine IrMnO2 nanoparticles (NPs) (≈1.56 nm) on the carbon nanotubes (Sr-IrMnO2/CNTs) are efficient catalysts for the acidic OER. Even with the Ir use dosage 3.5 times lower than that of the commercial IrO2, the Sr-IrMnO2/CNTs only need an overpotential of 236.0 mV to drive 10.0 mA cm-2 and show outstanding stability for >400.0 h. Its Ir mass activity is 39.6 times higher than that of the IrO2 at 1.53 V. The solid solution and Sr-doping structure of Sr-IrMnO2 are the main origin of the high catalytic activity and excellent stability of the Sr-IrMnO2/CNTs. The density function theory calculations indicate that the solid solution structure can promote strong electronic coupling between Ir and Mn, lowering the energy barrier of the OER rate-determining step. The Sr-doping can enhance the stability of Ir against the chemical corrosion and demetallation. Water electrolyzers and proton exchange membrane water electrolyzers assembled with the Sr-IrMnO2/CNTs show superb performance and excellent durability in the acid media.

12.
J Colloid Interface Sci ; 668: 525-539, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691962

RESUMO

Economical oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) bifunctional catalysts with high activity aimed at replacing precious metal catalysts for rechargeable zinc-air batteries (ZABs) must be developed. In this study, a multiple hierarchical-structural material is developed using a facile dielectric barrier discharge (DBD) plasma surface treatment, solvothermal reaction, and high-temperature carbonization strategy. This strategy allows for the construction of nanosheets using nitrogen-doped carbon (NC) material-encapsulated ternary CoNiFe alloy nanoparticles (NPs) on a network of NC nanotubes (NCNTs), denoted as CoNiFe-NC@p-NCNTs. Precisely, the presence of abundant CoNiFe alloy NPs and the formation of M-N-C active sites created by transition metals (cobalt, nickel, and iron) coupled with NC can provide superior OER/ORR bifunctional properties. Moreover, the prepared NC layers with a multilevel pore structure contribute to a larger specific surface area, exposing numerous active sites and enhancing the uniformity of electron and mass movement. The CoNiFe0.08-NC@p-NCNTs show remarkable dual functionality for electrochemical oxygen reactions (ORR half-wave potential of 0.811 V, limiting current density of 5.73 mA cm-2 measured with a rotating disk electrode at a rotation speed of 1600 rpm, and OER overpotential of 351 mV at 10 mA cm-2), which demonstrates similar ORR performance to 20 wt% Pt/C and better OER performance than the commercial RuO2. A liquid ZAB prepared using the proposed material has excellent bifunctionality with an open-circuit voltage of 1.450 V and long-term cycling stability of 230 h@10 mA cm-2.

13.
ChemSusChem ; 17(20): e202400254, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-38743510

RESUMO

Environmental pollution caused by persistent organic pollutants has imposed big threats to the health of human and ecological systems. The development of efficient methods to effectively degrade and remove these persistent organic pollutants is therefore of paramount importance. Photocatalytic persulfate-based advanced oxidation technologies (PS-AOTs), which depend on the highly reactive SO4 - radicals generated by the activation of PS to degrade persistent organic pollutants, have shown great promise. This work discusses the application and modification strategies of common photocatalysts in photocatalytic PS-AOTs, and compares the degradation performance of different catalysts for pollutants. Furthermore, essential elements impacting photocatalytic PS-AOTs are discussed, including the water matrix, reaction process mechanism, pollutant degradation pathway, singlet oxygen generation, and potential PS hazards. Finally, the existing issues and future challenges of photocatalytic PS-AOTs are summarized and prospected to encourage their practical application. In particular, by providing new insights into the PS-AOTs, this review sheds light on the opportunities and challenges for the development of photocatalysts with advanced features for the PS-AOTs, which will be of great interests to promote better fundamental understanding of the PS-AOTs and their practical applications.

14.
Nanomicro Lett ; 16(1): 250, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023812

RESUMO

This work reports the use of defect engineering and carbon supporting to achieve metal-doped phosphides with high activities and stabilities for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in alkaline media. Specifically, the nitrogen-doped carbon nanofiber-supported Ni-doped CoP3 with rich P defects (Pv·) on the carbon cloth (p-NiCoP/NCFs@CC) is synthesized through a plasma-assisted phosphorization method. The p-NiCoP/NCFs@CC is an efficient and stable catalyst for the HER and the OER. It only needs overpotentials of 107 and 306 mV to drive 100 mA cm-2 for the HER and the OER, respectively. Its catalytic activities are higher than those of other catalysts reported recently. The high activities of the p-NiCoP/NCFs@CC mainly arise from its peculiar structural features. The density functional theory calculation indicates that the Pv· richness, the Ni doping, and the carbon supporting can optimize the adsorption of the H atoms at the catalyst surface and promote the strong electronic couplings between the carbon nanofiber-supported p-NiCoP with the surface oxide layer formed during the OER process. This gives the p-NiCoP/NCFs@CC with the high activities for the HER and the OER. When used in alkaline water electrolyzers, the p-NiCoP/NCFs@CC shows the superior activity and excellent stability for overall water splitting.

15.
Small Methods ; : e2400565, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38923872

RESUMO

This work utilizes defect engineering, heterostructure, pyridine N-doping, and carbon supporting to enhance cobalt-nickel selenide microspheres' performance in the oxygen electrode reaction. Specifically, microspheres mainly composed of CoNiSe2 and Co9Se8 heterojunction rich in selenium vacancies (VSe·) wrapped with nitrogen-doped carbon nanotubes (p-CoNiSe/NCNT@CC) are prepared by Ar/NH3 radio frequency plasma etching technique. The synthesized p-CoNiSe/NCNT@CC shows high oxygen reduction reaction (ORR) performance (half-wave potential (E1/2) = 0.878 V and limiting current density (JL) = 21.88 mA cm-2). The JL exceeds the 20 wt% Pt/C (19.34 mA cm-2) and the E1/2 is close to the 20 wt% Pt/C (0.881 V). It also possesses excellent oxygen evolution reaction (OER) performance (overpotential of 324 mV@10 mA cm-2), which even exceeds that of the commercial RuO2 (427 mV@10 mA cm-2). The density functional theory calculation indicates that the enhancement of ORR performance is attributed to the synergistic effect of plasma-induced VSe· and the CoNiSe2-Co9Se8 heterojunction. The p-CoNiSe/NCNT@CC electrode assembled Zinc-air batteries (ZABs) show a peak power density of 138.29 mW cm-2, outperforming the 20 wt% Pt/C+RuO2 (73.9 mW cm-2) and other recently reported catalysts. Furthermore, all-solid-state ZAB delivers a high peak power density of 64.83 mW cm-2 and ultra-robust cycling stability even under bending.

16.
Chempluschem ; 89(5): e202300704, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38363060

RESUMO

Nanocomposite represents the backbone of many industrial fabrication applications and exerts a substantial social impact. Among these composites, metal nanostructures are often employed as the active constituents, thanks to their various chemical and physical properties, which offer the ability to tune the application scenarios in thermal management, energy storage, and biostable materials, respectively. Nanocellulose, as an emerging polymer substrate, possesses unique properties of abundance, mechanical flexibility, environmental friendliness, and biocompatibility. Based on the combination of flexible nanocellulose with specific metal fillers, the essential parameters involving mechanical strength, flexibility, anisotropic thermal resistance, and conductivity can be enhanced. Nowadays, the approach has found extensive applications in thermal management, energy storage, biostable electronic materials, and piezoelectric devices. Therefore, it is essential to thoroughly correlate cellulose nanocomposites' properties with different metallic fillers. This review summarizes the extraction of nanocellulose and preparation of metal modified cellulose nanocomposites, including their wide and particular applications in modern advanced devices. Moreover, we also discuss the challenges in the synthesis, the emerging designs, and unique structures, promising directions for future research. We wish this review can give a valuable overview of the unique combination and inspire the research directions of the multifunctional nanocomposites using proper cellulose and metallic fillers.

17.
J Colloid Interface Sci ; 649: 36-48, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37331108

RESUMO

Developing high-efficient, good-durability, and low-cost bifunctional non-precious metal catalysts for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is urgent and significant for promoting the practical rechargeable zinc-air batteries (RZABs). Herein, N-doped carbon coated Co/FeCo@Fe(Co)3O4 heterojunction rich in oxygen vacancies derived from metal-organic frameworks (MOFs) is successfully constructed by O2 plasma treatment. The phase transition of Co/FeCo to FeCo oxide (Fe3O4/Co3O4) mainly occurs on the surface of nanoparticles (NPs) during the O2 plasma treatment, which can form rich oxygen vacancies simultaneously. The fabricated catalyst P-Co3Fe1/NC-700-10 with optimal O2 plasma treatment time of 10 min can reduce the potential gap between the OER and ORR to 760 mV, which is much lower than commercial 20% Pt/C + RuO2 (910 mV). Density functional theory (DFT) calculation indicates that the synergistic coupling between Co/FeCo alloy NPs and FeCo oxide layer can promote the ORR/OER performance. Both liquid electrolyte RZAB and flexible all-solid-state RZAB using P-Co3Fe1/NC-700-10 as the air-cathode catalyst display high power density, specific capacity and excellent stability. This work provides an effective idea for the development of high performance bifunctional electrocatalyst and the application of RZABs.

18.
Nano Lett ; 11(10): 4067-73, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21916485

RESUMO

The dynamics of biexcitons in CdSe nanoparticles are examined as a function of the magnitudes of internal electric fields. We show that the presence of strong internal fields results in rapid Auger recombination. The strengths of the electric fields and hence the Auger recombination rates are controlled in several different ways: specifically, by varying the dielectric constant of the surrounding solvent, by changing the particle surface stoichiometry and hence the magnitude of surface charges, and by inducing a piezoelectric field through the deposition of a lattice-mismatched shell material. Auger recombination is a momentum forbidden process. Fourier transformation of calculated spatial wave functions shows that higher conduction band states have large momentum components that relax the momentum conservation constraints. Relative Auger recombination times depend upon the extent to which the internal electric fields mix conduction band levels, which is easily calculated. Comparison with calculations of valence band states suggests that the excited particle in biexciton Auger recombination is the other electron. The experimental results can therefore be understood in terms of mixing of higher conduction band states with the lowest state from which recombination occurs.

19.
Front Chem ; 10: 1073566, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465867

RESUMO

Direct methanol fuel cells (DMFCs) have been the focus of future research because of their simple structure, abundant fuel sources, high energy conversion efficiency and low cost. Among the components in DMFC, the activity and stability of the cathode catalyst is the key to the performance and lifetime of the DMFCs. Oxygen reduction reaction (ORR) is an important electrode reaction on DMFC cathode. It is known that Pt is widely used in the fabrication of ORR catalysts, but the limited earth storage of Pt and its high price limit the use of Pt-based commercial catalysts in DMFCs. To overcome these problems, advances have been made on new low Pt-based catalysts and Pt-free catalysts in recent years. In this article, the development of novel ORR catalysts and the carbon supports is reviewed and discussed.

20.
Food Chem ; 345: 128763, 2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-33302102

RESUMO

This study evaluated the effect of cooling rate on starch recrystallization in the presence of 2,3-butanedione and 2-acetyl-1-pyrroline, which could form B-type and V-type complexes with starch, respectively. Rapid cooling resulted in poor perfection and high heterogeneity of both B-type and V-type recrystallized crystal. For B-type crystal, rapid cooling changed nucleation mode from instantaneous (Avrami index n < 1) to continuous mechanism (1 ≤ n ≤ 2), and decreased recrystallization rate from 0.0502 to 0.0160 d-n, indicating the increased retention of starch on 2,3-butanedione. V-type crystal was formed at initial stages of recrystallization, and inhibited the growth of B-type crystal. The loose crystalline obtained by rapid cooling is conducive to the retention of flavor compounds for B-type complexes (especially ≤14 days) and V-type complexes (especially ≤1 day). These results could provide guidance for maintaining fragrance of instant rice during long-term storage.


Assuntos
Oryza/química , Amido/química , Temperatura Baixa , Cristalização , Aromatizantes , Odorantes , Transição de Fase , Pirróis , Paladar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA