Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 577(7788): 79-84, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31853069

RESUMO

Water lilies belong to the angiosperm order Nymphaeales. Amborellales, Nymphaeales and Austrobaileyales together form the so-called ANA-grade of angiosperms, which are extant representatives of lineages that diverged the earliest from the lineage leading to the extant mesangiosperms1-3. Here we report the 409-megabase genome sequence of the blue-petal water lily (Nymphaea colorata). Our phylogenomic analyses support Amborellales and Nymphaeales as successive sister lineages to all other extant angiosperms. The N. colorata genome and 19 other water lily transcriptomes reveal a Nymphaealean whole-genome duplication event, which is shared by Nymphaeaceae and possibly Cabombaceae. Among the genes retained from this whole-genome duplication are homologues of genes that regulate flowering transition and flower development. The broad expression of homologues of floral ABCE genes in N. colorata might support a similarly broadly active ancestral ABCE model of floral organ determination in early angiosperms. Water lilies have evolved attractive floral scents and colours, which are features shared with mesangiosperms, and we identified their putative biosynthetic genes in N. colorata. The chemical compounds and biosynthetic genes behind floral scents suggest that they have evolved in parallel to those in mesangiosperms. Because of its unique phylogenetic position, the N. colorata genome sheds light on the early evolution of angiosperms.


Assuntos
Genoma de Planta , Nymphaea/genética , Filogenia , Flores/genética , Flores/metabolismo , Nymphaea/metabolismo , Odorantes/análise
2.
Plant Physiol ; 193(4): 2622-2639, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37587696

RESUMO

Common purslane (Portulaca oleracea) integrates both C4 and crassulacean acid metabolism (CAM) photosynthesis pathways and is a promising model plant to explore C4-CAM plasticity. Here, we report a high-quality chromosome-level genome of nicotinamide adenine dinucleotide (NAD)-malic enzyme (ME) subtype common purslane that provides evidence for 2 rounds of whole-genome duplication (WGD) with an ancient WGD (P-ß) in the common ancestor to Portulacaceae and Cactaceae around 66.30 million years ago (Mya) and another (Po-α) specific to common purslane lineage around 7.74 Mya. A larger number of gene copies encoding key enzymes/transporters involved in C4 and CAM pathways were detected in common purslane than in related species. Phylogeny, conserved functional site, and collinearity analyses revealed that the Po-α WGD produced the phosphoenolpyruvate carboxylase-encoded gene copies used for photosynthesis in common purslane, while the P-ß WGD event produced 2 ancestral genes of functionally differentiated (C4- and CAM-specific) beta carbonic anhydrases involved in the C4 + CAM pathways. Additionally, cis-element enrichment analysis in the promoters showed that CAM-specific genes have recruited both evening and midnight circadian elements as well as the Abscisic acid (ABA)-independent regulatory module mediated by ethylene-response factor cis-elements. Overall, this study provides insights into the origin and evolutionary process of C4 and CAM pathways in common purslane, as well as potential targets for engineering crops by integrating C4 or CAM metabolism.


Assuntos
Portulaca , Portulaca/genética , Portulaca/metabolismo , Duplicação Gênica , Metabolismo Ácido das Crassuláceas , Evolução Biológica , Filogenia , Fotossíntese/genética
3.
Plant Physiol ; 193(1): 578-594, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37249052

RESUMO

Intracellular gene transfers (IGTs) between the nucleus and organelles, including plastids and mitochondria, constantly reshape the nuclear genome during evolution. Despite the substantial contribution of IGTs to genome variation, the dynamic trajectories of IGTs at the pangenomic level remain elusive. Here, we developed an approach, IGTminer, that maps the evolutionary trajectories of IGTs using collinearity and gene reannotation across multiple genome assemblies. We applied IGTminer to create a nuclear organellar gene (NOG) map across 67 genomes covering 15 Poaceae species, including important crops. The resulting NOGs were verified by experiments and sequencing data sets. Our analysis revealed that most NOGs were recently transferred and lineage specific and that Triticeae species tended to have more NOGs than other Poaceae species. Wheat (Triticum aestivum) had a higher retention rate of NOGs than maize (Zea mays) and rice (Oryza sativa), and the retained NOGs were likely involved in photosynthesis and translation pathways. Large numbers of NOG clusters were aggregated in hexaploid wheat during 2 rounds of polyploidization, contributing to the genetic diversity among modern wheat accessions. We implemented an interactive web server to facilitate the exploration of NOGs in Poaceae. In summary, this study provides resources and insights into the roles of IGTs in shaping interspecies and intraspecies genome variation and driving plant genome evolution.


Assuntos
Oryza , Poaceae , Poaceae/genética , Triticum/genética , Genoma de Planta/genética , Oryza/genética , Zea mays/genética , Evolução Molecular
4.
BMC Biol ; 21(1): 134, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280593

RESUMO

BACKGROUND: Sapria himalayana (Rafflesiaceae) is an endoparasitic plant characterized by a greatly reduced vegetative body and giant flowers; however, the mechanisms underlying its special lifestyle and greatly altered plant form remain unknown. To illustrate the evolution and adaptation of S. himalayasna, we report its de novo assembled genome and key insights into the molecular basis of its floral development, flowering time, fatty acid biosynthesis, and defense responses. RESULTS: The genome of S. himalayana is ~ 1.92 Gb with 13,670 protein-coding genes, indicating remarkable gene loss (~ 54%), especially genes involved in photosynthesis, plant body, nutrients, and defense response. Genes specifying floral organ identity and controlling organ size were identified in S. himalayana and Rafflesia cantleyi, and showed analogous spatiotemporal expression patterns in both plant species. Although the plastid genome had been lost, plastids likely biosynthesize essential fatty acids and amino acids (aromatic amino acids and lysine). A set of credible and functional horizontal gene transfer (HGT) events (involving genes and mRNAs) were identified in the nuclear and mitochondrial genomes of S. himalayana, most of which were under purifying selection. Convergent HGTs in Cuscuta, Orobanchaceae, and S. himalayana were mainly expressed at the parasite-host interface. Together, these results suggest that HGTs act as a bridge between the parasite and host, assisting the parasite in acquiring nutrients from the host. CONCLUSIONS: Our results provide new insights into the flower development process and endoparasitic lifestyle of Rafflesiaceae plants. The amount of gene loss in S. himalayana is consistent with the degree of reduction in its body plan. HGT events are common among endoparasites and play an important role in their lifestyle adaptation.


Assuntos
Genoma Mitocondrial , Transferência Genética Horizontal , Plantas/genética , Flores/genética , Filogenia
5.
Genome Res ; 29(2): 261-269, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30651279

RESUMO

Organisms continuously require genetic variation to adapt to fluctuating environments, yet major evolutionary events are episodic, making the relationship between genome evolution and organismal adaptation of considerable interest. Here, by genome-wide comparison of sorghum, maize, and rice SNPs, we investigated reservoirs of genetic variations with high precision. For sorghum and rice, which have not experienced whole-genome duplication in 96 million years or more, tandem duplicates accumulate relatively more SNPs than paralogous genes retained from genome duplication. However, maize, which experienced lineage-specific genome duplication and has a relatively larger supply of paralogous duplicates, shows SNP enrichment in paralogous genes. The proportion of genes showing signatures of recent positive selection is higher in small-scale (tandem and transposed) than genome-scale duplicates in sorghum, but the opposite is true in maize. A large proportion of recent duplications in rice are species-specific; however, most recent duplications in sorghum are derived from ancestral gene families. A new retrotransposon family was also a source of many recent sorghum duplications, illustrating a role in providing variation for genetic innovations. This study shows that diverse evolutionary mechanisms provide the raw genetic material for adaptation in taxa with divergent histories of genome evolution.


Assuntos
Grão Comestível/genética , Evolução Molecular , Duplicação Gênica , Genoma de Planta , Genes de Plantas , Família Multigênica , Oryza/genética , Polimorfismo de Nucleotídeo Único , Retroelementos , Seleção Genética , Sorghum/genética , Sintenia , Zea mays/genética
6.
BMC Plant Biol ; 22(1): 179, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35392808

RESUMO

BACKGROUND: To illustrate the molecular mechanism of mycoheterotrophic interactions between orchids and fungi, we assembled chromosome-level reference genome of Gastrodia menghaiensis (Orchidaceae) and analyzed the genomes of two species of Gastrodia. RESULTS: Our analyses indicated that the genomes of Gastrodia are globally diminished in comparison to autotrophic orchids, even compared to Cuscuta (a plant parasite). Genes involved in arbuscular mycorrhizae colonization were found in genomes of Gastrodia, and many of the genes involved biological interaction between Gatrodia and symbiotic microbionts are more numerous than in photosynthetic orchids. The highly expressed genes for fatty acid and ammonium root transporters suggest that fungi receive material from orchids, although most raw materials flow from the fungi. Many nuclear genes (e.g. biosynthesis of aromatic amino acid L-tryptophan) supporting plastid functions are expanded compared to photosynthetic orchids, an indication of the importance of plastids even in totally mycoheterotrophic species. CONCLUSION: Gastrodia menghaiensis has the smallest proteome thus far among angiosperms. Many of the genes involved biological interaction between Gatrodia and symbiotic microbionts are more numerous than in photosynthetic orchids.


Assuntos
Gastrodia , Micorrizas , Orchidaceae , Gastrodia/genética , Micorrizas/genética , Orchidaceae/genética , Orchidaceae/microbiologia , Filogenia , Simbiose/genética
7.
New Phytol ; 234(1): 295-310, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34997964

RESUMO

Clarifying the evolutionary processes underlying species diversification and adaptation is a key focus of evolutionary biology. Begonia (Begoniaceae) is one of the most species-rich angiosperm genera with c. 2000 species, most of which are shade-adapted. Here, we present chromosome-scale genome assemblies for four species of Begonia (B. loranthoides, B. masoniana, B. darthvaderiana and B. peltatifolia), and whole genome shotgun data for an additional 74 Begonia representatives to investigate lineage evolution and shade adaptation of the genus. The four genome assemblies range in size from 331.75 Mb (B. peltatifolia) to 799.83 Mb (B. masoniana), and harbor 22 059-23 444 protein-coding genes. Synteny analysis revealed a lineage-specific whole-genome duplication (WGD) that occurred just before the diversification of Begonia. Functional enrichment of gene families retained after WGD highlights the significance of modified carbohydrate metabolism and photosynthesis possibly linked to shade adaptation in the genus, which is further supported by expansions of gene families involved in light perception and harvesting. Phylogenomic reconstructions and genomics studies indicate that genomic introgression has also played a role in the evolution of Begonia. Overall, this study provides valuable genomic resources for Begonia and suggests potential drivers underlying the diversity and adaptive evolution of this mega-diverse clade.


Assuntos
Begoniaceae , Begoniaceae/genética , Evolução Molecular , Genoma , Filogenia , Sintenia/genética
8.
J Exp Bot ; 73(13): 4306-4322, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35437589

RESUMO

Bryophytes including mosses, liverworts, and hornworts are among the earliest land plants, and occupy a crucial phylogenetic position to aid in the understanding of plant terrestrialization. Despite their small size and simple structure, bryophytes are the second largest group of extant land plants. They live ubiquitously in various habitats and are highly diversified, with adaptive strategies to modern ecosystems on Earth. More and more genomes and transcriptomes have been assembled to address fundamental questions in plant biology. Here, we review recent advances in bryophytes associated with diversity, phylogeny, and ecological adaptation. Phylogenomic studies have provided increasing supports for the monophyly of bryophytes, with hornworts sister to the Setaphyta clade including liverworts and mosses. Further comparative genomic analyses revealed that multiple whole-genome duplications might have contributed to the species richness and morphological diversity in mosses. We highlight that the biological changes through gene gain or neofunctionalization that primarily evolved in bryophytes have facilitated the adaptation to early land environments; among the strategies to adapt to modern ecosystems in bryophytes, desiccation tolerance is the most remarkable. More genomic information for bryophytes would shed light on key mechanisms for the ecological success of these 'dwarfs' in the plant kingdom.


Assuntos
Briófitas , Embriófitas , Briófitas/genética , Ecossistema , Embriófitas/genética , Genômica , Filogenia , Plantas/genética , Transcriptoma
9.
New Phytol ; 226(5): 1506-1516, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31967665

RESUMO

Genes encoding interacting proteins tend to be co-retained after whole-genome duplication (WGD). The preferential retention after WGD has been explained by the gene balance hypothesis (GBH). However, small-scale duplications could independently occur in the connected gene families. Certain evolutionary strategies might keep the dosage balanced. Here, we examined the gene duplication, interaction and expression patterns of calcineurin B-like (CBL) and CBL-interacting protein kinase (CIPK) gene families to understand the underlying principles. The ratio of the CBL and CIPK gene numbers evolved from 5 : 7 in Physcomitrella to 10 : 26 in Arabidopsis, and retrotransposition, tandem duplication, and WGDs contributed to the expansion. Two pairs of CBLs and six pairs of CIPKs were retained after the α WGD in Arabidopsis, in which specific interaction patterns were identified. In some cases, two retained CBLs (CIPKs) might compete to interact with a sole CIPK (CBL). Results of gene expression analyses indicated that the relatively over-retained duplicates tend to show asymmetric expression, thus avoiding competition. In conclusion, our results suggested that the highly specific interaction, together with the differential gene expression pattern, jointly maintained the balanced dosage for the interacting CBL and CIPK proteins.


Assuntos
Arabidopsis , Proteínas de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Ligação ao Cálcio/genética , Duplicação Gênica , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
10.
Plant Cell Environ ; 43(12): 2847-2856, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33001478

RESUMO

Flowering plants, or angiosperms, consist of more than 300,000 species, far more than any other land plant lineages. The accumulated evidence indicates that multiple ancient polyploidy events occurred around 100 to 120 million years ago during the Cretaceous and drove the early diversification of four major clades of angiosperms: gamma whole-genome triplication in the common ancestor of core eudicots, tau whole-genome duplication during the early diversification of monocots, lambda whole-genome duplication during the early diversification of magnoliids, and pi whole-genome duplication in the Nymphaeales lineage. These four polyploidy events have played essential roles in the adaptive evolution and diversification of major clades of flowering plants. Here, we specifically review the current understanding of this wave of ancient whole-genome duplications and their evolutionary significance. Notably, although these ancient whole-genome duplications occurred independently, they have contributed to the expansion of many stress-related genes (e.g., heat shock transcription factors and Arabidopsis response regulators),and these genes could have been selected for by global environmental changes in the Cretaceous. Therefore, this ancient wave of paleopolyploidy events could have significantly contributed to the adaptation of angiosperms to environmental changes, and potentially promoted the wide diversification of flowering plants.


Assuntos
Adaptação Fisiológica/genética , Magnoliopsida/genética , Fenômenos Fisiológicos Vegetais/genética , Poliploidia , Estresse Fisiológico/genética , Evolução Biológica , Genoma de Planta/genética , Genoma de Planta/fisiologia , Magnoliopsida/fisiologia , Filogenia , Estresse Fisiológico/fisiologia
11.
Proc Natl Acad Sci U S A ; 112(2): 548-53, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25548189

RESUMO

The emergence of human infection with a novel H7N9 influenza virus in China raises a pandemic concern. Chicken H9N2 viruses provided all six of the novel reassortant's internal genes. However, it is not fully understood how the prevalence and evolution of these H9N2 chicken viruses facilitated the genesis of the novel H7N9 viruses. Here we show that over more than 10 y of cocirculation of multiple H9N2 genotypes, a genotype (G57) emerged that had changed antigenicity and improved adaptability in chickens. It became predominant in vaccinated farm chickens in China, caused widespread outbreaks in 2010-2013 before the H7N9 viruses emerged in humans, and finally provided all of their internal genes to the novel H7N9 viruses. The prevalence and variation of H9N2 influenza virus in farmed poultry could provide an important early warning of the emergence of novel reassortants with pandemic potential.


Assuntos
Galinhas/virologia , Evolução Molecular , Subtipo H7N9 do Vírus da Influenza A/genética , Vírus da Influenza A Subtipo H9N2/genética , Animais , Variação Antigênica/genética , Antígenos Virais/genética , China/epidemiologia , Genes Virais , Deriva Genética , Genótipo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Subtipo H7N9 do Vírus da Influenza A/imunologia , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Vírus da Influenza A Subtipo H9N2/imunologia , Vírus da Influenza A Subtipo H9N2/patogenicidade , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Influenza Humana/epidemiologia , Influenza Humana/virologia , Pandemias , Filogenia , Vírus Reordenados/genética , Vírus Reordenados/imunologia , Vírus Reordenados/patogenicidade , Estudos Retrospectivos
12.
Plant Physiol ; 172(1): 272-83, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27373688

RESUMO

Seagrasses are marine angiosperms that evolved from land plants but returned to the sea around 140 million years ago during the early evolution of monocotyledonous plants. They successfully adapted to abiotic stresses associated with growth in the marine environment, and today, seagrasses are distributed in coastal waters worldwide. Seagrass meadows are an important oceanic carbon sink and provide food and breeding grounds for diverse marine species. Here, we report the assembly and characterization of the Zostera muelleri genome, a southern hemisphere temperate species. Multiple genes were lost or modified in Z. muelleri compared with terrestrial or floating aquatic plants that are associated with their adaptation to life in the ocean. These include genes for hormone biosynthesis and signaling and cell wall catabolism. There is evidence of whole-genome duplication in Z. muelleri; however, an ancient pan-commelinid duplication event is absent, highlighting the early divergence of this species from the main monocot lineages.


Assuntos
Adaptação Fisiológica/genética , Ecossistema , Genoma de Planta/genética , Zosteraceae/genética , Organismos Aquáticos/genética , Duplicação Gênica , Ontologia Genética , Genes de Plantas/genética , Anotação de Sequência Molecular , Oceanos e Mares , Proteínas de Plantas/genética , Análise de Sequência de RNA
13.
Plant Cell ; 26(7): 2792-802, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25082857

RESUMO

Unraveling widespread polyploidy events throughout plant evolution is a necessity for inferring the impacts of whole-genome duplication (WGD) on speciation, functional innovations, and to guide identification of true orthologs in divergent taxa. Here, we employed an integrated syntenic and phylogenomic analyses to reveal an ancient WGD that shaped the genomes of all commelinid monocots, including grasses, bromeliads, bananas (Musa acuminata), ginger, palms, and other plants of fundamental, agricultural, and/or horticultural interest. First, comprehensive phylogenomic analyses revealed 1421 putative gene families that retained ancient duplication shared by Musa (Zingiberales) and grass (Poales) genomes, indicating an ancient WGD in monocots. Intergenomic synteny blocks of Musa and Oryza were investigated, and 30 blocks were shown to be duplicated before Musa-Oryza divergence an estimated 120 to 150 million years ago. Synteny comparisons of four monocot (rice [Oryza sativa], sorghum [Sorghum bicolor], banana, and oil palm [Elaeis guineensis]) and two eudicot (grape [Vitis vinifera] and sacred lotus [Nelumbo nucifera]) genomes also support this additional WGD in monocots, herein called Tau (τ). Integrating synteny and phylogenomic comparisons achieves better resolution of ancient polyploidy events than either approach individually, a principle that is exemplified in the disambiguation of a WGD series of rho (ρ)-sigma (σ)-tau (τ) in the grass lineages that echoes the alpha (α)-beta (ß)-gamma (γ) series previously revealed in the Arabidopsis thaliana lineage.


Assuntos
Evolução Molecular , Genoma de Planta/genética , Magnoliopsida/genética , Duplicação Gênica , Genômica , Filogenia , Poliploidia , Alinhamento de Sequência , Análise de Sequência de DNA , Sintenia
14.
Nature ; 473(7345): 97-100, 2011 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-21478875

RESUMO

Whole-genome duplication (WGD), or polyploidy, followed by gene loss and diploidization has long been recognized as an important evolutionary force in animals, fungi and other organisms, especially plants. The success of angiosperms has been attributed, in part, to innovations associated with gene or whole-genome duplications, but evidence for proposed ancient genome duplications pre-dating the divergence of monocots and eudicots remains equivocal in analyses of conserved gene order. Here we use comprehensive phylogenomic analyses of sequenced plant genomes and more than 12.6 million new expressed-sequence-tag sequences from phylogenetically pivotal lineages to elucidate two groups of ancient gene duplications-one in the common ancestor of extant seed plants and the other in the common ancestor of extant angiosperms. Gene duplication events were intensely concentrated around 319 and 192 million years ago, implicating two WGDs in ancestral lineages shortly before the diversification of extant seed plants and extant angiosperms, respectively. Significantly, these ancestral WGDs resulted in the diversification of regulatory genes important to seed and flower development, suggesting that they were involved in major innovations that ultimately contributed to the rise and eventual dominance of seed plants and angiosperms.


Assuntos
Evolução Molecular , Genoma de Planta/genética , Magnoliopsida/classificação , Magnoliopsida/genética , Poliploidia , Genômica , Filogenia
15.
BMC Evol Biol ; 13: 48, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23425243

RESUMO

BACKGROUND: Parasitic plants, represented by several thousand species of angiosperms, use modified structures known as haustoria to tap into photosynthetic host plants and extract nutrients and water. As a result of their direct plant-plant connections with their host plant, parasitic plants have special opportunities for horizontal gene transfer, the nonsexual transmission of genetic material across species boundaries. There is increasing evidence that parasitic plants have served as recipients and donors of horizontal gene transfer (HGT), but the long-term impacts of eukaryotic HGT in parasitic plants are largely unknown. RESULTS: Here we show that a gene encoding albumin 1 KNOTTIN-like protein, closely related to the albumin 1 genes only known from papilionoid legumes, where they serve dual roles as food storage and insect toxin, was found in Phelipanche aegyptiaca and related parasitic species of family Orobanchaceae, and was likely acquired by a Phelipanche ancestor via HGT from a legume host based on phylogenetic analyses. The KNOTTINs are well known for their unique "disulfide through disulfide knot" structure and have been extensively studied in various contexts, including drug design. Genomic sequences from nine related parasite species were obtained, and 3D protein structure simulation tests and evolutionary constraint analyses were performed. The parasite gene we identified here retains the intron structure, six highly conserved cysteine residues necessary to form a KNOTTIN protein, and displays levels of purifying selection like those seen in legumes. The albumin 1 xenogene has evolved through >150 speciation events over ca. 16 million years, forming a small family of differentially expressed genes that may confer novel functions in the parasites. Moreover, further data show that a distantly related parasitic plant, Cuscuta, obtained two copies of albumin 1 KNOTTIN-like genes from legumes through a separate HGT event, suggesting that legume KNOTTIN structures have been repeatedly co-opted by parasitic plants. CONCLUSIONS: The HGT-derived albumins in Phelipanche represent a novel example of how plants can acquire genes from other plants via HGT that then go on to duplicate, evolve, and retain the specialized features required to perform a unique host-derived function.


Assuntos
Miniproteínas Nó de Cistina/genética , Evolução Molecular , Transferência Genética Horizontal , Genes de Plantas , Orobanchaceae/genética , Sequência de Aminoácidos , Teorema de Bayes , DNA de Plantas/genética , Fabaceae/genética , Duplicação Gênica , Funções Verossimilhança , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Alinhamento de Sequência , Análise de Sequência de DNA
16.
BMC Plant Biol ; 13: 13, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23347749

RESUMO

BACKGROUND: Previous studies in basal angiosperms have provided insight into the diversity within the angiosperm lineage and helped to polarize analyses of flowering plant evolution. However, there is still not an experimental system for genetic studies among basal angiosperms to facilitate comparative studies and functional investigation. It would be desirable to identify a basal angiosperm experimental system that possesses many of the features found in existing plant model systems (e.g., Arabidopsis and Oryza). RESULTS: We have considered all basal angiosperm families for general characteristics important for experimental systems, including availability to the scientific community, growth habit, and membership in a large basal angiosperm group that displays a wide spectrum of phenotypic diversity. Most basal angiosperms are woody or aquatic, thus are not well-suited for large scale cultivation, and were excluded. We further investigated members of Aristolochiaceae for ease of culture, life cycle, genome size, and chromosome number. We demonstrated self-compatibility for Aristolochia elegans and A. fimbriata, and transformation with a GFP reporter construct for Saruma henryi and A. fimbriata. Furthermore, A. fimbriata was easily cultivated with a life cycle of just three months, could be regenerated in a tissue culture system, and had one of the smallest genomes among basal angiosperms. An extensive multi-tissue EST dataset was produced for A. fimbriata that includes over 3.8 million 454 sequence reads. CONCLUSIONS: Aristolochia fimbriata has numerous features that facilitate genetic studies and is suggested as a potential model system for use with a wide variety of technologies. Emerging genetic and genomic tools for A. fimbriata and closely related species can aid the investigation of floral biology, developmental genetics, biochemical pathways important in plant-insect interactions as well as human health, and various other features present in early angiosperms.


Assuntos
Aristolochia/genética , Aristolochia/fisiologia , Genoma de Planta/genética
17.
Nat Commun ; 14(1): 6556, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848433

RESUMO

Assembly of a high-quality genome is important for downstream comparative and functional genomic studies. However, most tools for genome assembly assessment only give qualitative reports, which do not pinpoint assembly errors at specific regions. Here, we develop a new reference-free tool, Clipping information for Revealing Assembly Quality (CRAQ), which maps raw reads back to assembled sequences to identify regional and structural assembly errors based on effective clipped alignment information. Error counts are transformed into corresponding assembly evaluation indexes to reflect the assembly quality at single-nucleotide resolution. Notably, CRAQ distinguishes assembly errors from heterozygous sites or structural differences between haplotypes. This tool can clearly indicate low-quality regions and potential structural error breakpoints; thus, it can identify misjoined regions that should be split for further scaffold building and improvement of the assembly. We have benchmarked CRAQ on multiple genomes assembled using different strategies, and demonstrated the misjoin correction for improving the constructed pseudomolecules.


Assuntos
Genoma , Genômica , Análise de Sequência de DNA , Heterozigoto , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala
18.
Cell Rep ; 42(11): 113441, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37971941

RESUMO

Grain number and size determine grain yield in crops and are closely associated with spikelet fertility and grain filling in barley (Hordeum vulgare). Abortion of spikelet primordia within individual barley spikes causes a 30%-50% loss in the potential number of grains during development from the awn primordium stage to the tipping stage, after that grain filling is the primary factor regulating grain size. To identify transcriptional signatures associated with spike development, we use a six-rowed barley cultivar (Morex) to develop a spatiotemporal transcriptome atlas containing 255 samples covering 17 stages and 5 positions along the spike. We identify several fundamental regulatory networks, in addition to key regulators of spike development and morphology. Specifically, we show HvGELP96, encoding a GDSL domain-containing protein, as a regulator of spikelet fertility and grain number. Our transcriptional atlas offers a powerful resource to answer fundamental questions in spikelet development and degeneration in barley.


Assuntos
Hordeum , Hordeum/genética , Hordeum/metabolismo , Grão Comestível , Transcriptoma/genética
19.
Genomics Proteomics Bioinformatics ; 21(2): 324-336, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35660007

RESUMO

Genetic and epigenetic changes after polyploidization events could result in variable gene expression and modified regulatory networks. Here, using large-scale transcriptome data, we constructed co-expression networks for diploid, tetraploid, and hexaploid wheat species, and built a platform for comparing co-expression networks of allohexaploid wheat and its progenitors, named WheatCENet. WheatCENet is a platform for searching and comparing specific functional co-expression networks, as well as identifying the related functions of the genes clustered therein. Functional annotations like pathways, gene families, protein-protein interactions, microRNAs (miRNAs), and several lines of epigenome data are integrated into this platform, and Gene Ontology (GO) annotation, gene set enrichment analysis (GSEA), motif identification, and other useful tools are also included. Using WheatCENet, we found that the network of WHEAT ABERRANT PANICLE ORGANIZATION 1 (WAPO1) has more co-expressed genes related to spike development in hexaploid wheat than its progenitors. We also found a novel motif of CCWWWWWWGG (CArG) specifically in the promoter region of WAPO-A1, suggesting that neofunctionalization of the WAPO-A1 gene affects spikelet development in hexaploid wheat. WheatCENet is useful for investigating co-expression networks and conducting other analyses, and thus facilitates comparative and functional genomic studies in wheat. WheatCENet is freely available at http://bioinformatics.cpolar.cn/WheatCENet and http://bioinformatics.cau.edu.cn/WheatCENet.


Assuntos
Transcriptoma , Triticum , Triticum/genética , Diploide , Genômica , Anotação de Sequência Molecular
20.
Plant Commun ; 4(3): 100516, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36597358

RESUMO

Artemisia argyi Lévl. et Vant., a perennial Artemisia herb with an intense fragrance, is widely used in traditional medicine in China and many other Asian countries. Here, we present a chromosome-scale genome assembly of A. argyi comprising 3.89 Gb assembled into 17 pseudochromosomes. Phylogenetic and comparative genomic analyses revealed that A. argyi underwent a recent lineage-specific whole-genome duplication (WGD) event after divergence from Artemisia annua, resulting in two subgenomes. We deciphered the diploid ancestral genome of A. argyi, and unbiased subgenome evolution was observed. The recent WGD led to a large number of duplicated genes in the A. argyi genome. Expansion of the terpene synthase (TPS) gene family through various types of gene duplication may have greatly contributed to the diversity of volatile terpenoids in A. argyi. In particular, we identified a typical germacrene D synthase gene cluster within the expanded TPS gene family. The entire biosynthetic pathways of germacrenes, (+)-borneol, and (+)-camphor were elucidated in A. argyi. In addition, partial deletion of the amorpha-4,11-diene synthase (ADS) gene and loss of function of ADS homologs may have resulted in the lack of artemisinin production in A. argyi. Our study provides new insights into the genome evolution of Artemisia and lays a foundation for further improvement of the quality of this important medicinal plant.


Assuntos
Artemisia , Terpenos , Duplicação Gênica , Artemisia/genética , Filogenia , Cromossomos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA