RESUMO
Glucose transporter 1 deficiency syndrome (GLUT1DS) is caused by haplo-insufficiency of SLC2A1, which encodes GLUT1, resulting in impaired hexose transport into the brain. Previously, we generated a tyrosine-mutant AAV9/3 vector in which SLC2A1 was expressed under the control of the endogenous GLUT1 promoter (AAV-GLUT1), and confirmed the improved motor function and cerebrospinal fluid glucose levels of Glut1-deficient mice after cerebroventricular injection of AAV-GLUT1. In preparation for clinical application, we examined the expression of transgenes after intra-cisterna magna injection of AAV-GFP (tyrosine-mutant AAV9/3-GFP with the CMV promoter) and AAV-GLUT1. We injected AAV-GFP or AAV-GLUT1 (1.63 × 1012 vector genomes/kg) into the cisterna magna of pigs to compare differential promoter activity. After AAV-GFP injection, exogenous GFP was expressed in broad areas of the brain and peripheral organs. After AAV-GLUT1 injection, exogenous GLUT1 was expressed predominantly in the brain. At the cellular level, exogenous GLUT1 was mainly expressed in the endothelium, followed by glia and neurons, which was contrasted with the neuronal-predominant expression of GFP by the CMV promotor. We consider intra-cisterna magna injection of AAV-GLUT1 to be a feasible approach for gene therapy of GLUT1DS.
Assuntos
Cisterna Magna , Dependovirus , Animais , Dependovirus/genética , Vetores Genéticos/genética , Transportador de Glucose Tipo 1/genética , Camundongos , Suínos , TransgenesRESUMO
BACKGROUND: We generated an adeno-associated virus (AAV) vector in which the human SLC2A1 gene, encoding glucose transporter type 1 (GLUT1), was expressed under the human endogenous GLUT1 promoter (AAV-GLUT1). We examined whether AAV-GLUT1 administration could lead to functional improvement in GLUT1-deficient mice. METHODS: We extrapolated human endogenous GLUT1 promoter sequences from rat minimal Glut1 promoter sequences. We generated a tyrosine-mutant AAV9/3 vector in which human SLC2A1-myc-DDK was expressed under the human GLUT1 promoter (AAV-GLUT1). AAV-GLUT1 was administered to GLUT1-deficient mice (GLUT1+/- mice) via intracerebroventricular injection (1.85 × 1010 vg/mouse or 6.5 × 1010 vg/mouse). We analyzed exogenous GLUT1 mRNA and protein expression in the brain and other major organs. We also examined improvements of cerebral microvasculature, motor function using rota-rod and footprint tests, as well as blood and cerebrospinal fluid (CSF) glucose levels. Additionally, we confirmed exogenous GLUT1 protein distribution in the brain and other organs after intracardiac injection (7.8 × 1011 vg/mouse). RESULTS: Exogenous GLUT1 protein was strongly expressed in the cerebral cortex, hippocampus and thalamus. It was mainly expressed in endothelial cells, and partially expressed in neural cells and oligodendrocytes. Motor function and CSF glucose levels were significantly improved following intracerebroventricular injection. Exogenous GLUT1 expression was not detected in other organs after intracerebroventricular injection of AAV-GLUT1, whereas it was detected in the liver and muscle tissue after intracardiac injection. CONCLUSIONS: Exogenous GLUT1 expression after AAV-GLUT1 injection approximated that of physiological human GLUT1 expression. Local central nervous system administration of AAV-GLUT1 improved CSF glucose levels and motor function of GLUT1-deficient mice and minimized off-target effects.
Assuntos
Dependovirus/genética , Terapia Genética , Transportador de Glucose Tipo 1/genética , Animais , Encéfalo/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/uso terapêutico , Glucose/líquido cefalorraquidiano , Transportador de Glucose Tipo 1/líquido cefalorraquidiano , Humanos , Fígado/metabolismo , Camundongos , Regiões Promotoras Genéticas , Ratos , TransgenesRESUMO
The molecular mechanisms underlying the formation of the thalamus during development have been investigated intensively. Although transcription factors distinguishing the thalamic primordium from adjacent brain structures have been uncovered, those involved in patterning inside the thalamus are largely unclear. Here, we show that Foxp2, a member of the forkhead transcription factor family, regulates thalamic patterning during development. We found a graded expression pattern of Foxp2 in the thalamic primordium of the mouse embryo. The expression levels of Foxp2 were high in the posterior region and low in the anterior region of the thalamic primordium. In Foxp2 (R552H) knockin mice, which have a missense loss-of-function mutation in the forkhead domain of Foxp2, thalamic nuclei of the posterior region of the thalamus were shrunken, while those of the intermediate region were expanded. Consistently, Foxp2 (R552H) knockin mice showed changes in thalamocortical projection patterns. Our results uncovered important roles of Foxp2 in thalamic patterning and thalamocortical projections during development.
Assuntos
Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Mutação/genética , Vias Neurais/fisiologia , Núcleos Talâmicos , Fatores Etários , Animais , Animais Recém-Nascidos , Calbindina 2/metabolismo , Desoxirribonucleases/metabolismo , Eletroporação/métodos , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fator 3-beta Nuclear de Hepatócito/genética , Proteínas com Homeodomínio LIM/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptor EphA8/metabolismo , Núcleos Talâmicos/embriologia , Núcleos Talâmicos/crescimento & desenvolvimento , Núcleos Talâmicos/metabolismo , Fatores de Transcrição/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteína Vermelha FluorescenteRESUMO
Class III phosphoinositide 3-kinase (PIK3C3 or mammalian vacuolar protein sorting 34 homolog, Vps34) regulates vesicular trafficking, autophagy, and nutrient sensing. Recently, we reported that PIK3C3 is expressed in mouse cerebral cortex throughout the developmental process, especially at early embryonic stage. We thus examined the role of PIK3C3 in the development of the mouse cerebral cortex. Acute silencing of PIK3C3 with in utero electroporation method caused positional defects of excitatory neurons during corticogenesis. Time-lapse imaging revealed that the abnormal positioning was at least partially because of the reduced migration velocity. When PIK3C3 was silenced in cortical neurons in one hemisphere, axon extension to the contralateral hemisphere was also delayed. These aberrant phenotypes were rescued by RNAi-resistant PIK3C3. Notably, knockdown of PIK3C3 did not affect the cell cycle of neuronal progenitors and stem cells at the ventricular zone. Taken together, PIK3C3 was thought to play a crucial role in corticogenesis through the regulation of excitatory neuron migration and axon extension. Meanwhile, when we performed comparative genomic hybridization on a patient with specific learning disorders, a 107 Kb-deletion was identified on 18q12.3 (nt. 39554147-39661206) that encompasses exons 5-23 of PIK3C3. Notably, the above aberrant migration and axon growth phenotypes were not rescued by the disease-related truncation mutant (172 amino acids) lacking the C-terminal kinase domain. Thus, functional defects of PIK3C3 might impair corticogenesis and relate to the pathophysiology of specific learning disorders and other neurodevelopmental disorders. Acute knockdown of Class III phosphoinositide 3-kinase (PIK3C3) evokes migration defects of excitatory neurons during corticogenesis. PIK3C3-knockdown also disrupts axon outgrowth, but not progenitor proliferation in vivo. Involvement of PIK3C3 in neurodevelopmental disorders might be an interesting future subject since a deletion mutation in PIK3C3 was detected in a patient with specific learning disorders (SLD).
Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Encéfalo/enzimologia , Encéfalo/crescimento & desenvolvimento , Deficiências da Aprendizagem/genética , Animais , Axônios , Encéfalo/embriologia , Movimento Celular/genética , Córtex Cerebral/embriologia , Córtex Cerebral/enzimologia , Córtex Cerebral/crescimento & desenvolvimento , Ventrículos Cerebrais/citologia , Ventrículos Cerebrais/enzimologia , Ventrículos Cerebrais/crescimento & desenvolvimento , Criança , Éxons/genética , Feminino , Deleção de Genes , Técnicas de Silenciamento de Genes , Inativação Gênica , Humanos , Testes de Inteligência , Deficiências da Aprendizagem/psicologia , Camundongos , Células-Tronco Neurais , Hibridização de Ácido Nucleico , Gravidez , Interferência de RNARESUMO
Autism spectrum disorder (ASD) is a developmental brain disorder. Mutations in synaptic components including synaptic adhesion molecules have been found in ASD patients. Contactin-associated protein-like 2 (CASPR2) is one of the synaptic adhesion molecules associated with ASD. CASPR2 forms a complex with receptors via interaction with multiple PDZ domain protein 1 (MUPP1). Little is known about the relationship between impaired CASPR2-MUPP1-receptor complex and the pathogenesis of ASD. GPR37 is a receptor for survival factors. We recently identified mutations including R558Q in the G-protein-coupled receptor 37 (GPR37) gene in ASD patients. The mutated GPR37s accumulate in the endoplasmic reticulum. In this study, we show that GPR37 is a component of the CASPR2-MUPP1 receptor complex in the mouse brain. CASPR2 and GPR37 mainly interacted with the PDZ3 and PDZ11 domains of MUPP1, respectively. Compared to GPR37, GPR37(R558Q) slightly interacted with MUPP1 and caused dendritic alteration. GPR37, but not GPR37(R558Q) nor GPR37-deltaC which lacks its PDZ binding domain, was transported to the cell surface by MUPP1. In primary hippocampal neurons, GPR37 co-localized with MUPP1 and CASPR2 at the synapse, but not GPR37(R558Q). Thus, ASD-related mutation of GPR37 may cause the impaired CASPR2-MUPP1-GPR37 complex on the dendrites associated with one of the pathogenesis of ASD. In this study, we identified that GPR37 is a component of the MUPP1 and CASPR2 receptor complex. Autism deleterious mutated GPR37(R558Q) slightly interacts with MUPP1 and retains in ER, resulting in dendritic alteration. In neuron, GPR37, but not GPR37(R558Q), is transported to the dendrite and synapse by MUPP1. Thus, ASD-related mutation of GPR37 may cause the impaired CASPR2-MUPP1-GPR37 complex on the dendrites associated with one of the pathogenesis of ASD.
Assuntos
Proteínas de Transporte/metabolismo , Transtornos Globais do Desenvolvimento Infantil/metabolismo , Proteínas de Membrana/metabolismo , Mutação/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Células COS , Proteínas de Transporte/genética , Células Cultivadas , Transtornos Globais do Desenvolvimento Infantil/genética , Chlorocebus aethiops , Hipocampo/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Ligação Proteica/fisiologia , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/genéticaRESUMO
Using comparative genomic hybridization analysis for an autism spectrum disorder (ASD) patient, a 73-Kb duplication at 19q13.33 (nt. 49 562 755-49 635 956) including LIN7B and 5 other genes was detected. We then identified a novel frameshift mutation in LIN7B in another ASD patient. Since LIN7B encodes a scaffold protein essential for neuronal function, we analyzed the role of Lin-7B in the development of cerebral cortex. Acute knockdown of Lin-7B with in utero electroporation caused a delay in neuronal migration during corticogenesis. When Lin-7B was knocked down in cortical neurons in one hemisphere, their axons failed to extend efficiently into the contralateral hemisphere after leaving the corpus callosum. Meanwhile, enhanced expression of Lin-7B had no effects on both cortical neuron migration and axon growth. Notably, silencing of Lin-7B did not affect the proliferation of neuronal progenitors and stem cells. Taken together, Lin-7B was found to play a pivotal role in corticogenesis through the regulation of excitatory neuron migration and interhemispheric axon growth, while further analyses are required to directly link functional defects of Lin-7B to ASD pathophysiology. Lin-7 plays a pivotal role as a scaffold protein in synaptic development and plasticity. Based on genetic analyses we identified mutations in LIN-7B gene in some ASD (autism-spectrum disorder) patients. Functional defects in Lin-7B caused abnormal neuronal migration and interhemispheric axon growth during mouse brain development. Thus, functional deficiency in Lin-7B could be implicated in clinical phenotypes in some ASD patients through bringing about abnormal cortical architecture.
Assuntos
Encéfalo/crescimento & desenvolvimento , Transtornos Globais do Desenvolvimento Infantil/genética , Proteínas de Membrana/genética , Animais , Axônios/efeitos dos fármacos , Células COS , Chlorocebus aethiops , Desoxiuridina/análogos & derivados , Desoxiuridina/metabolismo , Feminino , Humanos , Técnicas In Vitro , Linfócitos/efeitos dos fármacos , Masculino , Proteínas de Membrana/deficiência , Camundongos , Camundongos Endogâmicos ICR , Plasmídeos , Gravidez , Interferência de RNARESUMO
OBJECTIVE: We investigated a correlation between a mutation in the SLC2A1 gene and functional disorders in Glucose transporter I deficiency syndrome (GLUT1DS). METHODS: We performed direct sequence analysis of SLC2A1 in a severe GLUT1DS patient and identified a novel frame shift mutation, c.906_907insG, p.V303fs. We created a plasmid vector carrying the c.906_907insG mutation, as well as A405D or R333W in the SLC2A1, which are found in patients with mild and moderate GLUT1DS severity, respectively. We transiently expressed these mutants and wild type SLC2A1 plasmids in a human embryonic kidney cell line (HEK293), and performed immunoblotting, immunofluorescence, and enzymatic photometric 2-deoxyglucose (2DG) uptake assays. RESULTS: GLUT1 was not detected after transient expression of the SLC2A1 plasmid carrying c.906_907insG by either immunoblotting or immunofluorescence. The degree of glucose transport reduction as determined by enzymatic photometric 2DG assay uptake correlated with disease severity. CONCLUSIONS: Enzymatic photometric 2DG uptake study appears to be a suitable functional assay to predict the effect of SLC2A1 mutations on GLUT1 transport.
Assuntos
Erros Inatos do Metabolismo dos Carboidratos/genética , Erros Inatos do Metabolismo dos Carboidratos/fisiopatologia , Mutação da Fase de Leitura , Transportador de Glucose Tipo 1/genética , Proteínas de Transporte de Monossacarídeos/deficiência , Adolescente , Desoxiglucose/metabolismo , Genótipo , Células HEK293 , Humanos , Masculino , Proteínas de Transporte de Monossacarídeos/genética , Análise de Sequência de DNARESUMO
Mitochondrial diseases are mainly caused by dysfunction of mitochondrial respiratory chain complexes and have a variety of genetic variants or phenotypes. There are only a few approved treatments, and fundamental therapies are yet to be developed. Leigh syndrome (LS) is the most severe type of progressive encephalopathy. We previously reported that apomorphine, an anti- "off" agent for Parkinson's disease, has cell-protective activity in patient-derived skin fibroblasts in addition to strong dopamine agonist effect. We obtained 26 apomorphine analogs, synthesized 20 apomorphine derivatives, and determined their anti-cell death effect, dopamine agonist activity, and effects on the mitochondrial function. We found three novel apomorphine derivatives with an active hydroxy group at position 11 of the aporphine framework, with a high anti-cell death effect without emetic dopamine agonist activity. These synthetic aporphine alkaloids are potent therapeutics for mitochondrial diseases without emetic side effects and have the potential to overcome the low bioavailability of apomorphine. Moreover, they have high anti-ferroptotic activity and therefore have potential as a therapeutic agent for diseases related to ferroptosis.
Assuntos
Aporfinas , Doença de Leigh , Mitocôndrias , Doença de Leigh/tratamento farmacológico , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Aporfinas/farmacologia , Aporfinas/química , Aporfinas/síntese química , Aporfinas/uso terapêutico , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Apomorfina/farmacologia , Apomorfina/uso terapêutico , Apomorfina/análogos & derivados , Agonistas de Dopamina/farmacologia , Agonistas de Dopamina/uso terapêutico , Agonistas de Dopamina/química , Alcaloides/farmacologia , Alcaloides/química , Alcaloides/uso terapêuticoRESUMO
Originally, apomorphine was a broad-spectrum dopamine agonist with an affinity for all subtypes of the Dopamine D1 receptor to the D5 receptor. We previously identified apomorphine as a potential therapeutic agent for mitochondrial diseases by screening a chemical library of fibroblasts from patients with mitochondrial diseases. In this study, we showed that apomorphine prevented ferroptosis in fibroblasts from various types of mitochondrial diseases as well as in normal controls. Well-known biomarkers of ferroptosis include protein markers such as prostaglandin endoperoxide synthase 2 (PTGS2), a key gene for ferroptosis-related inflammation PTGS2, lipid peroxidation, and reactive oxygen species. Our findings that apomorphine induced significant downregulation of PTSG2 and suppressed lipid peroxide to the same extent as other inhibitors of ferroptosis also indicate that apomorphine suppresses ferroptosis. To our knowledge, this is the first study to report that the anti-ferroptosis effect of apomorphine is not related to dopamine receptor agonist action and that apomorphine is a potent inhibitor of ferroptotic cell death independent of dopaminergic receptors.
Assuntos
Ferroptose , Doenças Mitocondriais , Humanos , Apomorfina/farmacologia , Ciclo-Oxigenase 2/genética , Receptores de Dopamina D2/metabolismo , Agonistas de Dopamina/farmacologiaRESUMO
The ribosomal protein S6 kinase, 90 kb, polypeptide 3 gene (RPS6KA3) is responsible for Coffin-Lowry syndrome (CLS), which is characterized by intellectual disability (ID) and facial and bony abnormalities. This gene also affects nonsyndromic X-linked ID and nonsyndromic X-linked ID without bony abnormalities. Two families have been previously reported to have genetic microduplication including RPS6KA3. In the present study, we used array-comparative genomic hybridization (CGH) analysis with Agilent Human genome CGH 180K and detected a 584-kb microduplication spanning 19.92-20.50 Mb of Xp22.12 (including RPS6KA3) in the members of one family, including three brothers, two sisters, and their mother. The 15-year-old male proband and one of his brothers had mild ID and localization-related epilepsy, whereas his other brother presented borderline intelligence quotient (IQ) and attention-deficit-hyperactivity disorder (ADHD). One sister presented pervasive development disorder (PDD). Analysis of this family suggests that RPS6KA3 duplication is responsible for mild ID, ADHD, and localization-related epilepsy, and possibly for PDD.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtornos Globais do Desenvolvimento Infantil/genética , Cromossomos Humanos X/genética , Epilepsias Parciais/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Adolescente , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/complicações , Criança , Transtornos Globais do Desenvolvimento Infantil/complicações , Pré-Escolar , Epilepsias Parciais/complicações , Feminino , Duplicação Gênica , Humanos , Masculino , LinhagemRESUMO
BACKGROUND: Niemann-Pick disease type C (NPC) is an autosomal recessive inherited and neurodegenerative disorder. Approximately 10% of NPC patients have acute liver failure and sometimes need liver transplantation (LT), and 7% reportedly develop inflammatory bowel disease (IBD). We report the case of a girl with NPC who had a re- accumulation of cholesterol in the transplanted liver and NPC-related IBD. CASE REPORT: The patient underwent living donor liver transplantation (LDLT) due to severe acute liver failure caused by an unknown etiology inherited from her father. At 1 year and 6 months (1Y6M), she developed neurological delay, catalepsy, and vertical supranuclear gaze palsy. The foam cells were found in her skin, and fibroblast Filipin staining was positive; hence, she was diagnosed with NPC. It was identified that her father had NPC heterozygous pathogenic variant. At 2 years, she had anal fissure, skin tag and diarrhea. She was diagnosed with NPC-related IBD, using a gastrointestinal endoscopy. Three years after LT, liver biopsy revealed foam cells and numerous fatty droplets. At 8 years, broken hepatocytes and substantial fibrosis were observed. She died from circulation failure due to hypoalbuminemia at 8Y2M. CONCLUSIONS: In NPC, load of cholesterol metabolism is suggested to persist even after LT. LDLT from NPC heterozygous variant donor was insufficient to metabolize cholesterol overload. In NPC patients, the possibility of cholesterol re-accumulation should be considered when LT is performed. NPC-related IBD should be considered when NPC patients have anorectal lesions or diarrhea.
Assuntos
Doenças Inflamatórias Intestinais , Falência Hepática Aguda , Transplante de Fígado , Doença de Niemann-Pick Tipo C , Humanos , Recém-Nascido , Feminino , Doença de Niemann-Pick Tipo C/complicações , Doença de Niemann-Pick Tipo C/diagnóstico , Doadores Vivos , Colesterol/metabolismo , Doenças Inflamatórias Intestinais/complicaçõesRESUMO
Coenzyme Q10 (CoQ10) is involved in ATP production through electron transfer in the mitochondrial respiratory chain complex. CoQ10 receives electrons from respiratory chain complex I and II to become the reduced form, and then transfers electrons at complex III to become the oxidized form. The redox state of CoQ10 has been reported to be a marker of the mitochondrial metabolic state, but to our knowledge, no reports have focused on the individual quantification of reduced and oxidized CoQ10 or the ratio of reduced to total CoQ10 (reduced/total CoQ10) in patients with mitochondrial diseases. We measured reduced and oxidized CoQ10 in skin fibroblasts from 24 mitochondrial disease patients, including 5 primary CoQ10 deficiency patients and 10 respiratory chain complex deficiency patients, and determined the reduced/total CoQ10 ratio. In primary CoQ10 deficiency patients, total CoQ10 levels were significantly decreased, however, the reduced/total CoQ10 ratio was not changed. On the other hand, in mitochondrial disease patients other than primary CoQ10 deficiency patients, total CoQ10 levels did not decrease. However, the reduced/total CoQ10 ratio in patients with respiratory chain complex IV and V deficiency was higher in comparison to those with respiratory chain complex I deficiency. Measurement of CoQ10 in fibroblasts proved useful for the diagnosis of primary CoQ10 deficiency. In addition, the reduced/total CoQ10 ratio may reflect the metabolic status of mitochondrial disease.
RESUMO
The post-surgical fluid leakage from the tubular tissues is a critical symptom after gastrointestinal or urinary tract surgeries. Elucidating the mechanism for such abnormalities is vital in surgical and medical science. The exposure of the fluid such as peritonitis due to urinary or gastrointestinal perforation has been reported to induce severe inflammation to the surrounding tissue. However, there have been no reports for the tissue responses by fluid extravasation and assessment of post-surgical and injury complication processes is therefore vital. The current model mouse study aims to investigate the effect of the urinary extravasation of the urethral injuries. Analyses on the urinary extravasation affecting both urethral mesenchyme and epithelium and the resultant spongio-fibrosis/urethral stricture were performed. The urine was injected from the lumen of urethra exposing the surrounding mesenchyme after the injury. The wound healing responses with urinary extravasation were shown as severe edematous mesenchymal lesions with the narrow urethral lumen. The epithelial cell proliferation was significantly increased in the wide layers. The mesenchymal spongio-fibrosis was induced by urethral injury with subsequent extravasation. The current report thus offers a novel research tool for surgical sciences on the urinary tract.
Assuntos
Líquidos Corporais , Estreitamento Uretral , Animais , Camundongos , Uretra , Proliferação de Células , CicatrizaçãoRESUMO
The ATRX variant c.21-1G>A was detected by an exome analysis of a patient with Cockayne syndrome without alpha thalassemia X-linked intellectual disability syndrome (ATR-XS). In addition, variants in ERCC6 were detected. ATRX c.21-1G>A is localized at the splicing acceptor site of intron 1. This splicing event, NM_000489.6: c.21_133del p.S7Rfs*1, induces exon 2 deletion and early termination. The start codon in exon 3 of ATRX is presumed to produce a slightly shorter but functional ATRX protein.
RESUMO
Paired box transcription factor 8 (PAX8) is essential for thyroid organogenesis and development. Heterozygous pathogenic variants of PAX8 typically cause congenital hypothyroidism (CH) due to thyroid hypoplasia. Additionally, pathogenic PAX8 variants have been identified in patients with gland in situ (GIS). This study was conducted to analyze the in vitro functional consequences of four PAX8 variants (p.D94N, p.E90del, p.V58I, and p.L186Hfs*22) previously identified in patients with CH and GIS. The transcriptional activity of PAX8 variants on the thyroglobulin (TG) promoter was assessed in a luciferase reporter assay. The levels of transcriptional activity on the TG promoter of p.E90del and p.L186Hfs*22 were significantly reduced, whereas p.D94N and p.V58I showed residual activation. In addition, a dominant negative effect on the wild-type (WT) was not detected in any PAX8 variant using a luciferase reporter assay. Two PAX8 variants (p.E90del and p.L186Hfs*22) may be pathogenic causes of CH with GIS.
RESUMO
Niemann-Pick disease type C1 (NPC1) is a fatal congenital neurodegenerative disorder caused by mutations in the NPC1 gene, which is involved in cholesterol transport in lysosomes. Broad clinical manifestations of NPC1 include liver failure, pulmonary disorder, neurological deficits, and psychiatric symptoms. The main cause of death in NPC1 patients involves central nervous system (CNS) dysfunction; there is no essential treatment. We generated a tyrosine-mutant adeno-associated virus (AAV) 9/3 vector that expresses human NPC1 under a cytomegalovirus (CMV) promoter (AAV-CMV-hNPC1) and injected it into the left lateral ventricle (5 µL) and cisterna magna (10 µL) of Npc1 homo-knockout (Npc1-/-) mice. Each mouse received total 1.35 × 1011 vector genome on days 4 or 5 of life. AAV-treated Npc1-/- mice (n = 11) had an average survival of >28 weeks, while all saline-treated Npc1-/- mice (n = 11) and untreated Npc1-/- mice (n = 6) died within 16 weeks. Saline-treated and untreated Npc1-/- mice lost body weight from 7 weeks until death. However, the average body weight of AAV-treated Npc1-/- mice increased until 15 weeks. AAV-treated Npc1-/- mice also showed a significant improvement in the rotarod test performance. A pathological analysis at 11 weeks showed that cerebellar Purkinje cells were preserved in AAV-treated Npc1-/- mice. In contrast, untreated Npc1-/- mice showed an almost total loss of cerebellar Purkinje cells. Combined injection into both the lateral ventricle and cisterna magna achieved broader delivery of the vector to the CNS, leading to better outcomes than noted in previous reports, with injection into the lateral ventricles or veins alone. In AAV-treated Npc1-/- mice, vector genome DNA was detected widely in the CNS and liver. Human NPC1 RNA was detected in the brain, liver, lung, and heart. Accumulated unesterified cholesterol in the liver was reduced in the AAV-treated Npc1-/- mice. Our results suggest the feasibility of gene therapy for patients with NPC1.
Assuntos
Doença de Niemann-Pick Tipo C , Animais , Colesterol , Modelos Animais de Doenças , Terapia Genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/terapia , Células de PurkinjeRESUMO
Short-chain enoyl-CoA hydratase (ECHS1) is involved in amino acid and fatty acid catabolism in mitochondria and its deficiency causes Leigh syndrome or exercise-induced dystonia. More than 60 patients with this condition have been reported till date. The accumulation of intermediate metabolites of valine is assumed to be responsible for the cytotoxicity. Since protein restriction, including valine reportedly improves neurological symptoms, it is essential to consider the possible incidence of and diagnose ECHS1 syndrome in the earlier stages. This study reported the liquid chromatography with tandem mass spectrometry (LC-MS/MS) urine and plasma metabolite analysis in six cases, including four new cases with ECHS1 deficiency. The values of urine cysteine/cysteamine conjugates from valine metabolites, S-(2-carboxypropyl) cysteine/cysteamine from methacrylyl-CoA, and S-(2-carboxyethyl) cysteine/cysteamine from acryloyl-CoA were separated between six patients and six normal controls. The LC-MS/MS analysis revealed that these metabolites can be used for the early diagnosis and evaluation of diet therapy.
RESUMO
BACKGROUND: Pelizaeus-Merzbacher disease (PMD) is caused by point mutations or copy number changes in the proteolipid protein 1 gene (PLP1). PLP1 is exclusively localized in the myelin sheath of oligodendrocytes. Amino acid-substituted PLP1 protein is unable to fold properly and is subsequently degraded and/or restrictedly translated, resulting in a decrease in the PLP1 protein level and a failure to localize to the membrane. Furthermore, misfolded proteins increase the burden on the intracellular quality control system and trafficking, finally resulting in cell apoptosis. The objective of this study was to identify therapeutic chemicals for PMD by quantifying the total levels and membrane localization of PLP1. METHOD: We established a cell line stably expressing PLP1A243V fused with green fluorescent protein in oligodendrocyte-derived MO3.13 cells. We screened a chemical library composed of drugs approved for central nervous system disorders that increased both the total intensity of PLP1A243V in the whole cell and the cell membrane localization. We analyzed the change in the endoplasmic reticulum (ER) stress and the gene expression of candidate chemicals using a micro-array analysis. Finally, we tested the in vivo effectiveness using myelin synthesis deficient (msd) mice with Plp A243V . RESULTS AND CONCLUSION: Piracetam significantly increased the PLP1A243V intensity and membrane localization and decreased the ER stress. It was also shown to reverse the gene expression changes induced by PLP1A243V in a micro-array analysis. However, in vivo treatment of piracetam did not improve the survival of msd mice (Plp1A243V).
RESUMO
Mitochondrial disease is a genetic disorder in which individuals suffer from energy insufficiency. The various clinical phenotypes of mitochondrial disease include Leigh syndrome (LS), myopathy encephalopathy lactic acidosis and stroke-like episodes (MELAS). Thus far, no curative treatment is available, and effective treatment options are eagerly awaited. We examined the cell protective effect of an existing commercially available chemical library on fibroblasts from four patients with LS and MELAS and identified apomorphine as a potential therapeutic drug for mitochondrial disease. We conducted a cell viability assay under oxidative stress induced by L-butionine (S, R)-sulfoximine (BSO), a glutathione synthesis inhibitor. Among the chemicals of library, 4 compounds (apomorphine, olanzapine, phenothiazine and ethopropazine) rescued cells from death induced by oxidative stress much more effectively than idebenone, which was used as a positive control. The EC50 value showed that apomorphine was the most effective compound. Apomorphine also significantly improved all of the assessed oxygen consumption rate values by the extracellular flux analyzer for fibroblasts from LS patients with complex I deficiency. In addition, the elevation of the Growth Differentiation Factor-15 (GDF-15), a biomarker of mitochondrial disease, was significantly reduced by apomorphine. Among 441 apomorphine-responsive genes identified by the microarray, apomorphine induced the expression of genes that inhibit the mammalian target of rapamycin (mTOR) activity and inflammatory responses, suggesting that apomorphine induced cell survival via a new potential pathway. In conclusion, apomorphine rescued fibroblasts from cell death under oxidative stress and improved the mitochondrial respiratory activity and appears to be potentially useful for treating mitochondrial disease.