Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 62(1): 442-453, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36571809

RESUMO

Photocatalytic degradation of pollutants is an effective environment purification strategy. Metal-organic frameworks (MOFs) have attracted extensive attention in the field of photocatalysis owing to their structural diversity, uniform cavity, and large specific surface area. However, poor electrical conductivity, light absorption, and water stability restrict their development. The tailorable structure of MOFs may effectively overcome these limitations. Herein, three Cu-based MOFs (complexes 1-3) with one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) structures, respectively, were successfully prepared by introducing different uncoordinated ligands and adjusting the ligand/metal salt ratio. Among them, complex 1 with a 1D chain was constructed as a typical J-type aggregation by π-π stacking interactions between adjacent naphthalene rings. This intermolecular aggregation mode enhances strong exciton coupling between conjugated rings, reduces the transition energy, expands the intrinsic light absorption edge, and provides a channel for electron transport, thus improving the charge-separation efficiency. As expected, complex 1 with a 1D chain structure exhibited excellent Fenton-like catalytic activity. The apparent reaction rates were 3.2 and 2.0 times higher than those of 2D and 3D MOFs, respectively.

2.
J Appl Microbiol ; 133(4): 2096-2106, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34689405

RESUMO

AIMS: Thermophilic spoilage bacteria and their biofilms formed during milk powder processing posed threats to safety and quality of dairy products. This research aims to understand more about the bacterial behaviours and their social models in biofilms. METHODS AND RESULTS: Interactional effects from both extracellular metabolites and co-culture on biofilms formation of the contaminating thermophilic bacteria were determined. The results showed that strong biofilm formers always had high AI-2 activities, including Geobacillus stearothermophilus gs1, Bacillus licheniformis bl1 and Thermoactinomyces vulgaris tv1. Metabolites from themself or other species altered their biofilm biomass detected by crystal violet staining. Dual-species cultures observed by confocal laser scanning microscope indicated either synergistic or inhibitory effects between B. circulans bc1 and G. stearothermophilus gs1, as well as B. licheniformis bl1 and G. stearothermophilus gs1. Fourier transform infrared spectrometry results revealed the significant diversities in polysaccharides of the biofilm matrix. CONCLUSIONS: Cell communication played an important role on biofilm formation in the complex microbial community. Intraspecific and interspecific extracellular metabolites influenced collective bacterial behaviours under mixed circumstances. SIGNIFICANCE AND IMPACT OF STUDY: This research provided evidences on cell communication and biofilm formation of thermophilic bacteria in dairy industry.


Assuntos
Violeta Genciana , Leite , Animais , Bactérias , Biofilmes , Leite/microbiologia , Pós
3.
Molecules ; 26(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34500553

RESUMO

A highly water and thermally stable metal-organic framework (MOF) Zn2(Pydc)(Ata)2 (1, H2Pydc = 3,5-pyridinedicarboxylic acid; HAta = 3-amino-1,2,4-triazole) was synthesized on a large scale using inexpensive commercially available ligands for efficient separation of C2H2 from CH4 and CO2. Compound 1 could take up 47.2 mL/g of C2H2 under ambient conditions but only 33.0 mL/g of CO2 and 19.1 mL/g of CH4. The calculated ideal absorbed solution theory (IAST) selectivities for equimolar C2H2/CO2 and C2H2/CH4 were 5.1 and 21.5, respectively, comparable to those many popular MOFs. The Qst values for C2H2, CO2, and CH4 at a near-zero loading in 1 were 43.1, 32.1, and 22.5 kJ mol-1, respectively. The practical separation performance for C2H2/CO2 mixtures was further confirmed by column breakthrough experiments.

4.
Plant Cell Physiol ; 60(1): 52-62, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30192973

RESUMO

Dormancy is one of the least understood phenomena in plant biology; however, bud/corm dormancy is an important economic trait in agricultural/horticultural breeding. In this study, we isolated an ABA biosynthesis gene, GhNCED, from the transcriptome database of corm dormancy release (CDR), and characterized its negative role in regulating CDR. To understand transcriptional regulation of GhNCED, yeast one-hybrid screening was conducted and GhTCP19 was identified and shown to regulate GhNCED expression directly. An in planta assay showed that GhTCP19 negatively regulates GhNCED expression. GhTCP19 is dramatically induced by exogenous cytokinins (CKs) and is induced during CDR. Silencing of GhTCP19 in dormant cormels delayed CDR, resulting in higher expression of GhNCED and ABA levels. Meanwhile, endogenous CK biosynthesis and signaling were inhibited in GhTCP19-silenced cormels. Taken together, our results reveal that GhTCP19 is a positive regulator of the CDR process by repressing expression of an ABA biosynthesis gene (GhNCED), promoting CK biosynthesis (GhIPT) and signal transduction (GhARR) as well as inducing cyclin genes. This study expands our knowledge on CDR which is mediated by TCP family members.


Assuntos
Regulação da Expressão Gênica de Plantas , Iridaceae/genética , Iridaceae/fisiologia , Dormência de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Bases , Regulação para Baixo/genética , Inativação Gênica , Modelos Biológicos , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Transcrição Gênica , Transcriptoma/genética , Regulação para Cima/genética
5.
Apoptosis ; 24(3-4): 290-300, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30684145

RESUMO

Dihydromyricetin (DMY) is a traditional herbal medicine, with a wide range of biological activities. Extreme hyperthermia (HT) can suppress the immune system; thus, protection of the immune system is beneficial in heat-related diseases, including heatstroke. In our study, we revealed the protective effect of DMY against HT-induced apoptosis and analysed the underlying molecular mechanisms. We incubated human myelomonocytic lymphoma U937 cells at 44 °C for 30 min with or without DMY and followed by further incubation for 6 h at 37 °C. Cell viability was determined by the CCK-8 assay. DMY did not cause any cytotoxic effects in U937 cells even at high doses. HT treatment alone induced significant apoptosis, which was detected by DNA fragmentation and Annexin V/PI double staining. Mitochondrial dysfunction was identified by loss of mitochondrial membrane potential (MMP) during heat stimulation. Apoptotic related proteins were involved, truncated Bid and caspase-3 were upregulated, and Mcl-1 and XIAP were downregulated. We also identified the related signalling pathways, such as the MAPK and PI3K/AKT pathways. However, changes in HT were dramatically reversed when the cells were pretreated with DMY before exposure to HT. Overall, MAPKs and PI3K/AKT signalling, mitochondrial dysfunction, and caspase-mediated pathways were involved in the protective effect of DMY against HT-induced apoptosis in U937 cells, which was totally reversed by DMY pretreatment. These findings indicate a new clinical therapeutic strategy for the protection of immune cells during heatstroke.


Assuntos
Apoptose/efeitos dos fármacos , Febre/metabolismo , Flavonóis/farmacologia , Linfoma/tratamento farmacológico , Substâncias Protetoras/farmacologia , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Humanos , Linfoma/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células U937
6.
J Exp Bot ; 70(4): 1221-1237, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30517656

RESUMO

Corm dormancy is an important trait for breeding in many bulb flowers, including the most cultivated Gladiolus hybridus. Gladiolus corms are modified underground stems that function as storage organs and remain dormant to survive adverse environmental conditions. Unlike seed dormancy, not much is known about corm dormancy. Here, we characterize the mechanism of corm dormancy release (CDR) in Gladiolus. We identified an important ABA (abscisic acid) signaling regulator, GhPP2C1 (protein phosphatase 2C1), by transcriptome analysis of CDR. GhPP2C1 expression increased during CDR, and silencing of GhPP2C1 expression in dormant cormels delayed CDR. Furthermore, we show that GhPP2C1 expression is directly regulated by GhNAC83, which was identified by yeast one-hybrid library screening. In planta assays show that GhNAC83 is a negative regulator of GhPP2C1, and silencing of GhNAC83 promoted CDR. As expected, silencing of GhNAC83 decreased the ABA level, but also dramatically increased cytokinin (CK; zeatin) content in cormels. Binding assays demonstrate that GhNAC83 associates with the GhIPT (ISOPENTENYLTRANSFERASE) promoter and negatively regulates zeatin biosynthesis. Taken together, our results reveal that GhNAC83 promotes ABA signaling and synthesis, and inhibits CK biosynthesis pathways, thereby inhibiting CDR. These findings demonstrate that GhNAC83 regulates the ABA and CK pathways, and therefore controls corm dormancy.


Assuntos
Ácido Abscísico/metabolismo , Citocininas/biossíntese , Iridaceae/fisiologia , Dormência de Plantas/genética , Proteínas de Plantas/genética , Tubérculos/fisiologia , Iridaceae/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais
7.
J Appl Toxicol ; 38(2): 240-247, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28949029

RESUMO

Fenvalerate (Fen), a synthetic pyrethroid insecticide, is widely used in agricultural, domestic and veterinary applications. Fen induces abnormal cell proliferation and apoptosis, which are linked to its hazardous effects. However, this view is controversial and the underlying molecular mechanisms remain elusive. In the present study, the effects of Fen on cadmium (Cd)-induced apoptosis and the associated molecular mechanisms were investigated in human myeloid leukemia U937 cells. U937 cells were treated with 50 µm cadmium chloride (CdCl2 ) with or without Fen pretreatment at 1-50 µm. Apoptosis was evaluated by externalization of phosphatidylserine on the plasma membrane. The expression levels of apoptosis-related proteins, including Bcl-2 family members were determined by western blot analysis. The results revealed that pretreatment with Fen at 20 µm for 12 hours significantly inhibited Cd-induced apoptosis. Decreased expression of pro-apoptotic Bcl-2 family proteins (Noxa and Bid) and increased expression of anti-apoptotic proteins (Bcl-xL, Mcl-1 and XIAP) were observed after combined treatment with Fen and CdCl2 . Phosphorylation of ERK and AKT was increased, while phosphorylation of JNK was decreased by the combined treatment, compared with CdCl2 treatment alone. In conclusion, Fen decreased apoptotic sensitivity induced by Cd in U937 cells. This effect was associated with activation of ERK and AKT, suppression of JNK and changes in expression of Bcl-2 family proteins and XIAP. The present findings suggest a potential influence of Fen on Cd toxicity via suppression of apoptosis. Fen decreased apoptotic sensitivity induced by Cd, and thus it may contribute carcinogenic risk and influence on cancer therapy.


Assuntos
Apoptose/efeitos dos fármacos , Cádmio/toxicidade , Poluentes Ambientais/toxicidade , Substâncias Perigosas/toxicidade , Nitrilas/toxicidade , Piretrinas/toxicidade , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/patologia , Sobrevivência Celular/efeitos dos fármacos , Interações Medicamentosas , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células U937
8.
Appl Environ Microbiol ; 80(8): 2461-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24509931

RESUMO

Nutrient sensors and developmental timers are two classes of genes vital to the establishment of early development in the social soil bacterium Myxococcus xanthus. The products of these genes trigger and regulate the earliest events that drive the colony from a vegetative state to aggregates, which ultimately leads to the formation of fruiting bodies and the cellular differentiation of the individual cells. In order to more accurately identify the genes and pathways involved in the initiation of this multicellular developmental program in M. xanthus, we adapted a method of growing vegetative populations within a constant controllable environment by using flow cell bioreactors, or flow cells. By establishing an M. xanthus community within a flow cell, we are able to test developmental responses to changes in the environment with fewer concerns for effects due to nutrient depletion or bacterial waste production. This approach allows for greater sensitivity in investigating communal environmental responses, such as nutrient sensing. To demonstrate the versatility of our growth environment, we carried out time-lapse confocal laser scanning microscopy to visualize M. xanthus biofilm growth and fruiting body development, as well as fluorescence staining of exopolysaccharides deposited by biofilms. We also employed the flow cells in a nutrient titration to determine the minimum concentration required to sustain vegetative growth. Our data show that by using a flow cell, M. xanthus can be held in a vegetative growth state at low nutrient concentrations for long periods, and then, by slightly decreasing the nutrient concentration, cells can be allowed to initiate the developmental program.


Assuntos
Técnicas Bacteriológicas/métodos , Reatores Biológicos/microbiologia , Myxococcus xanthus/crescimento & desenvolvimento , Aderência Bacteriana , Biofilmes/crescimento & desenvolvimento , Microscopia Confocal , Myxococcus xanthus/fisiologia , Imagem com Lapso de Tempo
9.
Medicine (Baltimore) ; 103(6): e37051, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335416

RESUMO

This study was to investigate the improvement value of Niaoduqing particles in the outcome of non-diabetic patients with stage IV chronic kidney disease (CKD). The non-diabetic patients with stage IV CKD who were to receive Niaoduqing particles were set as the study group (252 cases), and the patients with the same disease who only received Western medicine in the public database were set as the control group (220 cases). The follow-up visits were 3 months/time for 1 year. Deaths due to various causes, doubling of creatinine levels, and end-stage renal disease were used as hard end points to stop follow-up. The clinical indexes of the 2 groups were observed and compared. The results showed that the rate of compound outcome was significantly lower in the study group (28.17%) than in the control group (36.82%), the glomerular filtration rate was significantly higher than that in the control group, and the levels of uric acid and urea were significantly lower than that in the control group (P < .05). Niaoduqing particles can reduce creatinine and urea nitrogen, stabilize renal function, delay dialysis time, and improve the incidence of compound outcome in patients with non-diabetic stage IV CKD, which is worthy of clinical promotion.


Assuntos
Diálise Renal , Insuficiência Renal Crônica , Humanos , Estudos Retrospectivos , Creatinina , Progressão da Doença , Insuficiência Renal Crônica/epidemiologia , Taxa de Filtração Glomerular , Ureia
10.
Reproduction ; 146(2): 169-79, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23690627

RESUMO

The function of Smad3, a downstream signaling protein of the transforming growth factor ß (TGFß) pathway, in ovarian follicle development remains to be elucidated. The effects of Smad3 on ovarian granulosa cells (GCs) in rat were studied. Female rats (21 days of age Sprague-Dawley) received i.p. injections of pregnant mare serum gonadotropin, and GCs were harvested for primary culture 48 h later. These cells were engineered to overexpress or knockdown Smad3, which were validated by immunohistochemistry and western blot. The expression of proliferating cell nuclear antigen (PCNA), cyclin D2, TGFß receptor II (TGFßRII), protein kinase A (PKA), and FSH receptor (FSHR) was also detected by western blotting. Cell cycle and apoptosis of GCs were assayed by flow cytometry. The level of estrogen secreted by GCs was detected by ELISA. Smad3 overexpression promoted estrogen production and proliferation while inhibiting apoptosis of GCs. Reduction in Smad3 by RNAi resulted in reduced estrogen production and proliferation and increased apoptosis of GCs. Manipulation of Smad3 expression also resulted in changes in FSHR and PKA expression, suggesting that the effects of Smad3 on follicle development are related to FSHR-mediated cAMP signaling.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Células da Granulosa/metabolismo , Receptores do FSH/metabolismo , Sistemas do Segundo Mensageiro , Proteína Smad3/metabolismo , Animais , Apoptose , Ciclo Celular , Proliferação de Células , Células Cultivadas , Estradiol/metabolismo , Feminino , Inativação Gênica , Células da Granulosa/citologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/metabolismo , Proteína Smad3/antagonistas & inibidores , Proteína Smad3/genética , Regulação para Cima
11.
Front Med (Lausanne) ; 10: 1116103, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636569

RESUMO

Objective: This meta-analysis aims to compare the efficacy and safety of peritoneal dialysis (PD) and hemodialysis (HD) in the treatment of diabetic kidney failure. Methods: Five databases were selected to retrieve research on PD and HD for diabetic kidney failure until 6 August 2022. A fixed-effects or random-effects model was utilized to calculate the standardized mean difference (SMD) or odds ratio (OR) based on the heterogeneity among studies. Results: Sixteen studies were included. The results showed that patients with diabetic kidney failure treated with PD had lower levels of albumin, total protein, and systolic blood pressure (SBP) and higher levels of urine volume, creatinine, and blood urea nitrogen (BUN) and lower risk of cardiovascular and bleeding events, with significant statistical difference when compared with patients treated with HD (albumin: SMD = -1.22, 95%CI: -1.53, -0.91; total protein: SMD = -0.96, 95%CI: -1.16, -0.77; SBP: SMD = -0.35, 95%CI: -0.64, -0.06; urine volume: SMD = 0.68, 95%CI: 0.40, 0.96; creatinine: SMD = 0.49, 95%CI: 0.27, 0.72; BUN: SMD = 0.55, 95%CI: 0.25, 0.85; cardiovascular events: OR = 0.42, 95%CI: 0.28, 0.62; bleeding: OR = 0.41, 95%CI 0.27, 0.62). Conclusion: This meta-analysis summarized the advantages and disadvantages of PD and HD for treating diabetic kidney failure patients. Compared with HD, PD is more effective in preserving residual kidney function, reducing hemodynamic effect, and lowering the risk of bleeding and cardiovascular events in diabetic kidney failure patients, but it also predisposes to protein-energy malnutrition and increases the risk of infection.

12.
Polymers (Basel) ; 15(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37959961

RESUMO

Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) has gained significant attention because of its biodegradability and sustainability. However, its expanded application in some fields is limited by the brittleness and low melt viscoelasticity. In this work, poly(vinyl acetate) (PVAc) was introduced into PHBH/poly(propylene carbonate) (PPC) blends via melt compounding with the aim of obtaining a good balance of properties. Dynamic mechanical analysis results suggested that PPC and PHBH were immiscible. PVAc was miscible with both a PHBH matrix and PPC phase, while it showed better miscibility with PHBH than with PPC. Therefore, PVAc was selectively localized in a PHBH matrix, reducing interfacial tension and refining dispersed phase morphology. The crystallization rate of PHBH slowed down, and the degree of crystallinity decreased with the introduction of PPC and PVAc. Moreover, the PVAc phase significantly improved the melt viscoelasticity of ternary blends. The most interesting result was that the remarkable enhancement of toughness for PHBH/PPC blends was obtained by adding PVAc without sacrificing the strength markedly. Compared with the PHBH/PPC blend, the elongation at the break and yield strength of the PHBH/PPC/10PVAc blend increased by 1145% and 7.9%, respectively. The combination of high melt viscoelasticity, toughness and strength is important for the promotion of the practical application of biological PHBH.

13.
Dalton Trans ; 52(32): 11042-11046, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37540047

RESUMO

Penta-iodination of the B2-6 positions of the {CB11} monocarborane cluster is reported. Products of the structure [2,3,4,5,6-I5-CB11H6-12-X]- (X = H, Me, Et, Ph, Br, I) were obtained and fully characterized. X-ray crystal structures of three new compounds confirm this particular substitution pattern. The synthetic method relies on palladium catalysis/B-H activation, assisted by the C1-COOH directing group. The one-pot procedure enables penta-iodination and subsequent decarboxylation under convenient conditions. The B2-6 regioselectivity is complementary to the commonly observed reactivity of {CB11} clusters, which follows the trend B12 > B7-11 > B2-6 for electrophilic substitution. Thus, for the first time upper-belt halogenation is achieved without prior modification of the lower-belt positions.

14.
Micromachines (Basel) ; 15(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276829

RESUMO

Telluriums (Te) with various nanostructures, including particles, wires, and sheets, are controllably synthesized by adjusting the content of polyvinylpyrrolidone (PVP) in a facile solvothermal reaction. Te nanostructures all have complete grain sizes with excellent crystallinity and mesopore structures. Further, the formation mechanisms of Te nanostructures are proposed to be that the primary nuclei of Te are released from the reduction of TeO32- using N2H4·H2O, and then grow into various nanostructures depending on the different content of PVP. These nanostructures of Te all exhibit the photocatalytic activities for the degradation of MB and H2 production under visible light irradiation, especially Te nanosheets, which have the highest efficiencies of degradation (99.8%) and mineralization (65.5%) at 120 min. In addition, compared with pure Te nanosheets, the rate of H2 production increases from 412 to 795 µmol∙h-1∙g-1 after the introduction of Pt, which increases the output by nearly two times. The above investigations indicate that Te with various nanostructures is a potential photocatalyst in the field of degradation of organic pollutants and H2 fuel cells.

15.
Shock ; 59(2): 256-266, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36427100

RESUMO

ABSTRACT: Dendritic cell (DC)-mediated immune dysfunction is involved in the process of severe hemorrhagic shock that leads to sepsis. Although post-hemorrhagic shock mesenteric lymph (PHSML) induces immune organs injuries and apoptosis, whether PHSML exerts adverse effects on splenic DCs remains unknown. In this study, we established a hemorrhagic shock model (40 ± 2 mm Hg for 60 min) followed by fluid resuscitation with the shed blood and equal Ringer's solution and drained the PHSML after resuscitation. At 3 h after resuscitation, we harvested the splenic tissue to isolate DCs using anti-CD11c immunomagnetic beads and then detected the necrotic and apoptotic rates in splenocytes and splenic DCs. We also detected the levels of TNF-α, IL-10, and IL-12 in the culture supernatants and surface marker expressions of MHC-II, CD80, and CD86 of splenic DCs following LPS stimulation for 24 h. Second, we purified the DCs from splenocytes of normal mice to investigate the effects of PHSML treatment on cytokine production and surface marker expression following LPS stimulation. The results showed that PHSML drainage attenuated LPS-induced cell death of splenocytes and DCs. Meanwhile, PHSML drainage enhanced the DC percentage in splenocytes and increased the TNF-α and IL-12 production by DCs and the expressions of CD80, CD86, and MHCII of DCs treated by LPS. Furthermore, PHSML treatment reduced the productions of TNF-α, IL-10, and IL-12 and the expressions of CD80 and CD86 in normal DCs after treatment with LPS. In summary, the current investigation demonstrated that PHSML inhibited the cytokine production and surface marker expressions of DCs stimulated by LPS, suggesting that PHSML plays an important role in hemorrhagic shock-induced immunosuppression through the impairment of DC function and maturation.


Assuntos
Choque Hemorrágico , Humanos , Choque Hemorrágico/terapia , Interleucina-10/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/farmacologia , Interleucina-12/metabolismo , Células Dendríticas/metabolismo
16.
Materials (Basel) ; 16(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138657

RESUMO

At present, it is known that when there is clay in concrete, polycarboxylates (PCE) will preferably adsorb in the clay, so that PCE cannot be fully combined with cement particles, which reduces the workability of the cement slurry. In this paper, a new type of maltitol-ammonium salt cationic (KN-lm) sacrificial agent (SA) has been successfully developed via a simple method, which makes PCE easier to bond with cement particles in the cement slurry containing clay. The effect of KN-lm on the fluidity of clay-containing cement paste is studied, and the experimental results show that KN-lm, as an efficient SA of cement slurry, makes PCE more compatible with clay-containing cement slurry, and increases the initial fluidity of cement slurry by about 19%. Further investigations of TOC, XRD, and zeta potential measurements reveal that a KN-lm ion is only preferably adsorbed into clay compared to PCE through electrostatic adsorption but without having any crystal structure change, thus resulting in good dispersion of cement particles. The addition of KN-lm plays an important role in hindering the hydration expansion of the clay by preferential electrostatic adsorption, which means PCE cannot easily insert into the interlayer of the clay.

17.
Adv Sci (Weinh) ; 9(9): e2104579, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35032106

RESUMO

Achieving structure optimizing and component regulation simultaneously in the ZnIn2 S4 -based photocatalytic system is an enormous challenge in improving its hydrogen evolution performance. 3D hollow-structured photocatalysts have been intensively studied due to their obvious advantages in solar energy conversion reactions. The synthesis of 3D hollow-structured ZnIn2 S4 , however, is limited by the lack of suitable template or synthesis methods, thereby restricting the wide application of ZnIn2 S4 in the field of photocatalysis. Herein, Ce-doped ZnIn2 S4 photocatalysts with hollow nanocages are obtained via one-step hydrothermal method with an ordered large-pore tetrakaidecahedron cerium-based metal-organic frameworks (Ce-MOFs) as template and Ce ion source. The doping of Ce and the formation of ZnIn2 S4 tetrakaidecahedron hollow nanocages with ultrathin nanosheet subunits are simultaneously induced by the Ce-MOFs, making this groundbreaking work. The Ce-doped ZnIn2 S4 with a nonspherical 3D hollow nanostructure inherit the tetrakaidecahedron shape of the Ce-MOF templates, and the shell is composed of ultrathin nanosheet subunits. Both theoretical and experimental results indicate that the doping of Ce and the formation of hollow nanocages increase light capture and the separation of photogenerated charge carriers.

18.
Front Plant Sci ; 13: 839572, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265096

RESUMO

Crop pests are a major agricultural problem worldwide because the severity and extent of their occurrence threaten crop yield. However, traditional pest image segmentation methods are limited, ineffective and time-consuming, which causes difficulty in their promotion and application. Deep learning methods have become the main methods to address the technical challenges related to pest recognition. We propose an improved deep convolution neural network to better recognize crop pests in a real agricultural environment. The proposed network includes parallel attention mechanism module and residual blocks, and it has significant advantages in terms of accuracy and real-time performance compared with other models. Extensive comparative experiment results show that the proposed model achieves up to 98.17% accuracy for crop pest images. Moreover, the proposed method also achieves a better performance on the other public dataset. This study has the potential to be applied in real-world applications and further motivate research on pest recognition.

19.
Chem Commun (Camb) ; 59(1): 67-70, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36453249

RESUMO

Regioselective, five-fold B-H activation of the monocarborane cluster [CB11H12]- at the positions B7-11 has been accomplished. Selective substitution of these positions by B-H activation has not been reported before. Our protocol involves directing group assistance by the carboxylic acid functionality and is based on palladium catalysis using iodoarene coupling partners. Penta-arylated products are obtained in a single step with yields ranging from 42% to 89% and with good functional group tolerance. X-Ray crystal structures for five new compounds confirm the selective substitution of the lower belt of the monocarborane cage.

20.
Food Res Int ; 150(Pt A): 110754, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34865772

RESUMO

Thermophilic bacteria, such as Bacillus licheniformis, Geobacillus stearothermophilus, Bacillus Subtilis and Anoxybacillus flavithermus, are detected frequently in milk powder products. Biofilms of those strains act as a major contamination to milk powder manufactures and pose potential risks in food safety. In this study, we explored the developing process of multi-species biofilm formed by the four thermophilic bacteria on stainless steel immerged in skimmed milk. The results showed that the thermophilic strains possessed strong capacities to decompose proteins and lactose in skimmed milk, and the spoilage effects were superimposed from multiple strains. B. licheniformis was the most predominant species in the mixed-species biofilm after 12-h incubation. From 24 h to 48 h, G. stearothermophilus occupied the highest proportion. Within the multi-species biofilm, competitive relation existed between B. licheniformis and G. stearothermophilus, while synergistic impacts were observed between B. licheniformis and A. flavithermus. The interspecies mutual influences on biofilm development provided important evidences for understanding colonization of the predominant thermophilic bacteria during milk powder processing.


Assuntos
Leite , Aço Inoxidável , Animais , Biofilmes , Geobacillus stearothermophilus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA