Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Control Release ; 371: 338-350, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38789089

RESUMO

Nutrient or energy deprivation, especially glucose restriction, is a promising anticancer therapeutic approach. However, establishing a precise and potent deprivation strategy remains a formidable task. The Golgi morphology is crucial in maintaining the function of transport proteins (such as GLUT1) driving glycolysis. Thus, in this study, we present a "Golgi-customized Trojan horse" based on tellurium loaded with apigenin (4',5,7-trihydroxyflavone) and human serum albumin, which was able to induce GLUT1 plasma membrane localization disturbance via Golgi dispersal leading to the inhibition of tumor glycolysis. Diamond-shaped delivery system can efficiently penetrate into cells as a gift like Trojan horse, which decomposes into tellurite induced by intrinsically high H2O2 and GSH levels. Consequently, tellurite acts as released warriors causing up to 3.8-fold increase in Golgi apparatus area due to the down-regulation of GOLPH3. Further, this affects GLUT1 membrane localization and glucose transport disturbance. Simultaneously, apigenin hinders ongoing glycolysis and causes significant decrease in ATP level. Collectively, our "Golgi-customized Trojan horse" demonstrates a potent antitumor activity because of its capability to deprive energy resources of cancer cells. This study not only expands the applications of tellurium-based nanomaterials in the biomedicine but also provides insights into glycolysis restriction for anticancer therapy.


Assuntos
Apigenina , Membrana Celular , Transportador de Glucose Tipo 1 , Glicólise , Complexo de Golgi , Telúrio , Humanos , Glicólise/efeitos dos fármacos , Complexo de Golgi/metabolismo , Complexo de Golgi/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Transportador de Glucose Tipo 1/metabolismo , Apigenina/administração & dosagem , Apigenina/farmacologia , Telúrio/administração & dosagem , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Glucose/metabolismo
2.
Acta Pharm Sin B ; 13(2): 863-878, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36873167

RESUMO

Ferroptosis (FPT), a novel form of programmed cell death, is characterized by overwhelming iron/reactive oxygen species (ROS)-dependent accumulation of lipid peroxidation (LPO). However, the insufficiency of endogenous iron and ROS level limited the FPT therapeutic efficacy to a large extent. To overcome this obstacle, the bromodomain-containing protein 4 (BRD4)-inhibitor (+)-JQ1 (JQ1) and iron-supplement ferric ammonium citrate (FAC)-loaded gold nanorods (GNRs) are encapsulated into the zeolitic imidazolate framework-8 (ZIF-8) to form matchbox-like GNRs@JF/ZIF-8 for the amplified FPT therapy. The existence of matchbox (ZIF-8) is stable in physiologically neutral conditions but degradable in acidic environment, which could prevent the loaded agents from prematurely reacting. Moreover, GNRs as the drug-carriers induce the photothermal therapy (PTT) effect under the irradiation of near-infrared II (NIR-II) light owing to the absorption by localized surface plasmon resonance (LSPR), while the hyperthermia also boosts the JQ1 and FAC releasing in the tumor microenvironment (TME). On one hand, the FAC-induced Fenton/Fenton-like reactions in TME can simultaneously generate iron (Fe3+/Fe2+) and ROS to initiate the FPT treatment by LPO elevation. On the other hand, JQ1 as a small molecule inhibitor of BRD4 protein can amplify FPT through downregulating the expression of glutathione peroxidase 4 (GPX4), thus inhibiting the ROS elimination and leading to the LPO accumulation. Both in vitro and in vivo studies reveal that this pH-sensitive nano-matchbox achieves obvious suppression of tumor growth with good biosafety and biocompatibility. As a result, our study points out a PTT combined iron-based/BRD4-downregulated strategy for amplified ferrotherapy which also opens the door of future exploitation of ferrotherapy systems.

3.
Adv Mater ; 35(14): e2210047, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36637449

RESUMO

Intestinal milieu disorders are strongly related to the occurrence of inflammatory bowel diseases (IBDs), which results from mucosa destruction, epithelium disruption, and tight junction (TJ) proteins loss. Excess of H2 S in the intestinal milieu produced by the sulfate-reducing bacteria metabolism contributes to development of IBDs via epithelial barrier breakdown. Conventional interventions, such as surgery and anti-inflammatory medications, are considered not completely effective because of frequent recurrence and other complications. Herein, a novel oral delivery system, a hydroxypropyl methylcellulose acetate succinate (HPMCAS)-based polymer-coated Zr-based metal-organic framework (UiO-66) with a Cux -rhodamine B (CR) probe (hereinafter referred to as HUR), is produced via a co-flow microfluidic approach with the ability to reduce H2 S levels, thus restoring the intestinal lumen milieu. HPMCAS serves as an enteric coating that exposes UiO-66@CR at the pH of the intestine but not the acidic pH of the stomach. The synthesized HUR exhibits notable therapeutic efficacy, including mucosa recovery, epithelium integrity restoration, and TJ proteins upregulation via H2 S scavenging to protect against intestinal barrier damage and microbiome dysbiosis. Thus, HUR is verified to be a promising theranostic platform able to decrease the H2 S content for intestinal milieu disorder treatment. The presented study therefore opens the door for further exploitation for IBDs therapy.


Assuntos
Estruturas Metalorgânicas , Mucosa Intestinal/metabolismo , Intestinos , Estruturas Metalorgânicas/metabolismo , Microfluídica , Junções Íntimas , Sulfeto de Hidrogênio/química
4.
Acta Pharm Sin B ; 13(12): 5030-5047, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38045041

RESUMO

Liver fibrosis is a reversible pathological process caused by chronic liver damage and a major risk factor for hepatocellular carcinoma (HCC). Hepatic stellate cell (HSC) activation is considered the main target for liver fibrosis therapy. However, the efficiency of this strategy is limited due to the complex microenvironment of liver fibrosis, including excessive extracellular matrix (ECM) deposition and hypoxia-induced imbalanced ECM metabolism. Herein, nilotinib (NIL)-loaded hyaluronic acid (HA)-coated Ag@Pt nanotriangular nanozymes (APNH NTs) were developed to inhibit HSCs activation and remodel the microenvironment of liver fibrosis. APNH NTs efficiently eliminated intrahepatic reactive oxygen species (ROS) due to their inherent superoxide dismutase (SOD) and catalase (CAT) activities, thereby downregulating the expression of NADPH oxidase-4 (NOX-4) and inhibiting HSCs activation. Simultaneously, the oxygen produced by the APNH NTs further alleviated the hypoxic microenvironment. Importantly, the released NIL promoted collagen depletion by suppressing the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1), thus synergistically remodeling the microenvironment of liver fibrosis. Notably, an in vivo study in CCl4-induced mice revealed that APNH NTs exhibited significant antifibrogenic effects without obvious long-term toxicity. Taken together, the data from this work suggest that treatment with the synthesized APNH NTs provides an enlightening strategy for remodeling the microenvironment of liver fibrosis with boosted antifibrogenic activity.

5.
Org Lett ; 24(6): 1286-1291, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35142219

RESUMO

A palladium(II)-catalyzed enantioselective arylation of unbiased secondary C(sp3)-H bonds was developed. The enantioselectivity was controlled by the combination of a pyridyl or isoquinolinyl directing group and an amino acid, N-Boc-2-pentyl proline. A variety of 2-propyl azaaryls and biaryl iodides were employed to provide arylated products in moderate to good yields (up to 82%) with high enantioselectivities (up to 93:7 er). This reaction is a rare example of an amino-acid-enabled enantioselective acyclic methylene C(sp3)-H arylation. Furthermore, the reaction proceeded with high enantioselectivity even on a gram scale, and the product was transformed to a 5,6,7,8-tetrahydroisoquinoline bioactive molecule. Kinetic isotope effect (KIE) experiments indicated that C-H activation is the rate-determining step for the enantioselective C(sp3)-H arylation.

6.
J Control Release ; 341: 247-260, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34826531

RESUMO

Hepatic fibrosis, characterized by excessive reactive oxygen species (ROS) generation, hepatic stellate cells (HSCs) activation, and enormous extracellular matrix (ECM) production, can further cause liver cirrhosis, liver failure and liver cancer. However, the combination of limited solubility, low targeting, uncontrolled release and the sophisticated physiological barriers are tremendous challenges for therapeutic effect. In this study, we engineered a sequential delivery strategy based on autophagy inhibitor carvedilol (CAR) loaded and hyaluronic acid (HA) modified star-like Au nanozyme (Au NS@CAR-HA) for targeted HSCs suppression. In hepatic fibrosis acidic environment, CAR-HA can be firstly detached from Au NS@CAR-HA. Then, CAR would be released from CAR-HA conjugation by chemical bond breakage which triggered by intracellular acid potential, thus could suppressing autolysosome generation by up-regulation of autosome and lysosome pH value to inhibit HSCs activation. Meanwhile, Au NS exhibited enhanced ROS scavenging efficiency of hydrogen peroxides and superoxide, which was helpful to restrain the activity of peroxisome proliferators-activated receptors ß (PPARß) and c-Jun N-terminal kinase (JNK), thereby reducing HSCs proliferation to enhance HSCs inactivation efficacy. In conclusion, Au NS@CAR-HA can attenuate hepatic fibrosis via regulating the proliferation and activation of hepatic stellate cells, which provides a new strategy for hepatic fibrosis treatment.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , Carvedilol , Matriz Extracelular , Humanos , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Regulação para Cima
7.
J Mater Chem B ; 10(41): 8549-8564, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36239131

RESUMO

Rheumatoid arthritis (RA) is a chronic arthropathy causing cartilage destruction, bone erosion, and even disability. Although some advances in RA treatment have been made based on inflammatory cytokine inhibition, long-term treatment and drug effect have been restrained by severe side effects. Herein, we developed a resveratrol (RSV)-loaded Ag/Ag2S triangular-shaped homologous heterostructure with polyethylene glycol/folic acid (PEG/FA) modification (Ag/Ag2S-PEG-FA/RSV NTs) to simultaneously suppress inflammatory cytokine over-expression through photocatalytic H2S scavenging and macrophage polarization stimulation. On one hand, the over-expressed H2S, which acted as a pro-inflammatory mediator to activate the MAPK/ICAM-1 pathway and exacerbate inflammation, was eliminated through photocatalysis. The homologous Ag and Ag2S of the heterostructure enhanced electron separation and transfer by acting as a charge acceptor and electron generator, respectively, which restrained electron/hole recombination and promoted photocatalysis efficiency. Additionally, the intrinsic superoxide dismutase (SOD) and catalase (CAT) activity of Ag decomposed the reactive oxygen species (ROS) over-expressed in the RA microenvironment, which supplied O2 for the photocatalytic H2S scavenging progress. On the other hand, RSV, a natural product with anti-inflammatory activity, could be delivered to the inflammatory joint by the targeting effect of PEG-FA, thus inhibiting the IκB/NF-κB pro-inflammatory pathway to induce macrophage interconversion balance from M1 to M2. As expected, the Ag/Ag2S-PEG-FA/RSV NTs exhibited H2S scavenging capacity and modulated macrophage polarization to reduce the inflammatory cytokine level and halt RA progression in vitro and in vivo. Overall, this study revealed a therapeutic strategy with high efficacy, which opens broad prospects for RA treatment.


Assuntos
Artrite Reumatoide , Produtos Biológicos , Humanos , Espécies Reativas de Oxigênio/metabolismo , NF-kappa B/metabolismo , Resveratrol/uso terapêutico , Catalase/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/farmacologia , Molécula 1 de Adesão Intercelular/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Macrófagos/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Citocinas/metabolismo , Antioxidantes/farmacologia , Produtos Biológicos/farmacologia , Superóxido Dismutase/metabolismo , Ácido Fólico/farmacologia , Polietilenoglicóis/farmacologia , Mediadores da Inflamação/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA