Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37240027

RESUMO

The existing treatment modalities for skin injuries mainly include dressings, negative-pressure wound treatment, autologous skin grafting, and high-pressure wound treatment. All of these therapies have limitations such as high time cost, the inability to remove inactivated tissue in a timely manner, surgical debridement, and oxygen toxicity. Mesenchymal stem cells have a unique self-renewal ability and wide differentiation potential, and they are one of the most promising stem cell types in cell therapy and have great application prospects in the field of regenerative medicine. Collagen exerts structural roles by promoting the molecular structure, shape, and mechanical properties of cells, and adding it to cell cultures can also promote cell proliferation and shorten the cell doubling time. The effects of collagen on MSCs were examined using Giemsa staining, EdU staining, and growth curves. Mice were subjected to allogeneic experiments and autologous experiments to reduce individual differences; all animals were separated into four groups. Neonatal skin sections were detected by HE staining, Masson staining, immunohistochemical staining, and immunofluorescence staining. We found that the MSCs pretreated with collagen accelerated the healing of skin wounds in mice and canines by promoting epidermal layer repair, collagen deposition, hair follicle angiogenesis, and an inflammatory response. Collagen promotes the secretion of the chemokines and growth factors associated with skin healing by MSCs, which positively influences skin healing. This study supports the treatment of skin injuries with MSCs cultured in medium with collagen added.


Assuntos
Células-Tronco Mesenquimais , Cicatrização , Camundongos , Animais , Cães , Cicatrização/fisiologia , Pele/lesões , Colágeno , Proliferação de Células
2.
Stem Cell Res Ther ; 15(1): 195, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956738

RESUMO

BACKGROUND: Nowadays, companion and working dogs hold significant social and economic importance. Dry eye, also known as dry keratoconjunctivitis (KCS), a common disease in ophthalmology, can readily impact a dog's working capacity and lead to economic losses. Although there are several medications available for this disease, all of them only improve the symptoms on the surface of the eye, and they are irritating and not easy to use for long periods of time. Adipose-derived mesenchymal stem cells (ADMSC) are promising candidates for tissue regeneration and disease treatment. However, long-term in vitro passaging leads to stemness loss of ADMSC. Here, we aimed to use ADMSC overexpressing Secreted Protein Acidic and Rich in Cysteine (SPARC) to treat 0.25% benzalkonium chloride-treated dogs with dry eye to verify its efficacy. For in vitro validation, we induced corneal epithelial cell (HCECs) damage using 1 µg/mL benzalkonium chloride. METHODS: Fifteen male crossbred dogs were randomly divided into five groups: normal, dry eye self-healing control, cyclosporine-treated, ADMSC-CMV-treated and ADMSC-OESPARC-treated. HCECs were divided into four groups: normal control group, untreated model group, ADMSC-CMV supernatant culture group and ADMSC-OESRARC supernatant culture group. RESULTS: SPARC-modified ADMSC had the most significant effect on canine ocular surface inflammation, corneal injury, and tear recovery, and the addition of ADMSC-OESPARC cell supernatant also had a salvage effect on HCECs cellular damage, such as cell viability and cell proliferation ability. Moreover, analysis of the co-transcriptome sequencing data showed that SPARC could promote corneal epithelial cell repair by enhancing the in vitro viability, migration and proliferation and immunosuppression of ADMSC. CONCLUSION: The in vitro cell test and in vivo model totally suggest that the combination of SPARC and ADMSC has a promising future in novel dry eye therapy.


Assuntos
Compostos de Benzalcônio , Modelos Animais de Doenças , Síndromes do Olho Seco , Células-Tronco Mesenquimais , Osteonectina , Animais , Cães , Compostos de Benzalcônio/farmacologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Síndromes do Olho Seco/terapia , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/metabolismo , Síndromes do Olho Seco/patologia , Osteonectina/metabolismo , Osteonectina/genética , Masculino , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA