RESUMO
Cancer arises from the growth and division of uncontrolled erroneous cells. Programmed cell death (PCD), or regulated cell death (RCD), includes natural processes that eliminate damaged or abnormal cells. Dysregulation of PCD is a hallmark of cancer, as cancer cells often evade cell death and continue to proliferate. Exosomes nanoscale extracellular vesicles secreted by different types of cells carrying a variety of molecules, including nucleic acids, proteins, and lipids, to have indispensable role in the communication between cells, and can influence various cellular processes, including PCD. Exosomes have been shown to modulate PCD in cancer cells by transferring pro- or antideath molecules to neighboring cells. Additionally, exosomes can facilitate the spread of PCD to surrounding cancer cells, making them promising in the treatment of various cancers. The exosomes' diagnostic potential in cancer is also an active area of research. Exosomes can be isolated from a wide range of bodily fluids and tissues, such as blood and urine, and can provide a noninvasive way to monitor cancer progression and treatment response. Furthermore, exosomes have also been employed as a delivery system for therapeutic agents. By engineering exosomes to carry drugs or other therapeutic molecules, they can be targeted specifically to cancer cells, reducing toxicity to healthy tissues. Here, we discussed exosomes in the diagnosis and prevention of cancers, tumor immunotherapy, and drug delivery, as well as in different types of PCD.
Assuntos
Exossomos , Vesículas Extracelulares , Neoplasias , Humanos , Exossomos/metabolismo , Exossomos/patologia , Neoplasias/tratamento farmacológico , Vesículas Extracelulares/patologia , ApoptoseRESUMO
Lung cancer is one of the most common cancers worldwide and a leading cause of cancer-related deaths. Macrophages play a key role in the immune response and the tumour microenvironment. As an important member of the immune system, macrophages have multiple functions, including phagocytosis and clearance of pathogens, modulation of inflammatory responses, and participation in tissue repair and regeneration. In lung cancer, macrophages are considered to be the major cellular component of the tumor-associated inflammatory response and are closely associated with tumorigenesis, progression and metastasis. However, macrophages gradually undergo a senescence process with age and changes in pathological states. Macrophage senescence is an important change in the functional and metabolic state of macrophages and may have a significant impact on lung cancer development. In lung cancer, senescent macrophages interact with other cells in the tumor microenvironment (TME) by secreting senescence-associated secretory phenotype (SASP) factors, which can either promote the proliferation, invasion and metastasis of tumor cells or exert anti-tumor effects through reprogramming or clearance under specific conditions. Therefore, senescent macrophages are considered important potential targets for lung cancer therapy. In this paper, a systematic review of macrophages and their senescence process, and their role in tumors is presented. A variety of inhibitory strategies against senescent macrophages, including enhancing autophagy, inhibiting SASP, reducing DNA damage, and modulating metabolic pathways, were also explored. These strategies are expected to improve lung cancer treatment outcomes by restoring the anti-tumor function of macrophages.
RESUMO
Renal cancer incidence has been increasing across the world, clear cell renal cell carcinoma (ccRCC) represents the major subtype of renal cancer. The proteasome is involved in onset, metabolism and survival of tumor and has been recognized as a therapeutic target for various malignancies, while the role of ß subunits of proteasome, PSMB gene family, in ccRCC has not been fully unveiled. Herein we investigated the expression and the prognostic role of PSMBs in ccRCC by analyzing a series of databases, including ONCOMINE, UALCAN, cBioPortal, STRING, GEPIA, GO and KEGG. Over-expressions of PSMB1/2/4/7/8/9/10 mRNA were found in ccRCC tissues compared to normal tissues, transcriptional levels of PSMB2/3/4/6/8/9/10 were significantly positively associated with patients' individual cancer stages and grades. Similar or higher levels of proteins encoded by PSMB1/2/3/7/8/9/10 were observed in tumor tissues compared to normal renal tissues. Further, high mRNA levels of PSMB1/2/3/4/6/10 were correlated with shorter overall survival in univariate analysis. Taken together, the results of our analysis implied that overexpression of PSMB1/2/3/4/6/8/9/10 were indicative of worse prognosis of ccRCC. However, further researches were required to validate our findings.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/patologia , Biologia Computacional/métodos , Humanos , Neoplasias Renais/patologia , Prognóstico , Complexo de Endopeptidases do Proteassoma/genética , RNA Mensageiro/genéticaRESUMO
Hepatocellular carcinoma, also referred to as HCC, is the most frequent form of primary liver cancer. It is anticipated that the discovery of the molecular pathways related with HCC would open up new possibilities for the treatment of HCC.WGCNA (Weighted gene co-expression network analysis) and molecular docking analysis were used to study the structural characteristics of POU2AF1 recombinant protein and its interaction with related proteins. Normal samples were placed in one group, and tumor samples were placed in another group inside the GEO database. We continued our investigation of the DEGs by performing an enrichment analysis using GO and KEGG. The GSCA platform is utilized in the process of doing an analysis of the connection between gene expression and medication sensitivity. In the end, the core target and the active molecule were both given the green light for a molecular docking investigation. POU2AF1 is being considered as a possible therapeutic target for HCC, and the results of our work have presented novel concepts for the treatment of HCC.
Assuntos
Neoplasias Hepáticas , Simulação de Acoplamento Molecular , Proteínas Recombinantes , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Fator 1 de Transcrição de Octâmero/metabolismo , Fator 1 de Transcrição de Octâmero/química , Fator 1 de Transcrição de Octâmero/genética , Progressão da Doença , Redes Reguladoras de Genes , Perfilação da Expressão Gênica , Ligação ProteicaRESUMO
Endocrine tumors like thyroid carcinoma are becoming more frequent. No clinically informative predictors were found. Thus, effective gene networks and representative biomarkers can illuminate thyroid cancer prevention molecular mechanisms. TBC1D4 is an activating protein molecule that plays an important role in regulating cell metabolism and signal transduction. The aim of this study was to investigate the expression characteristics of TBC1D4 activating protein molecules and identify key module genes that prevent thyroid cancer progression. GSE65144 data were downloaded from GEO. "limma" in R found DEGs with a false discovery rate < 0.05 and a log2 fold change <1. WGCNA builds gene co-expression networks, screens key modules, and filters hub genes. Overlapping genes become hub genes. Hub genes underwent GO and KEGG pathway enrichment analysis. We used Lasso to extract hub gene expression results' distinctive genes. Key genes. GEPIA database determined expression and survival impact. A total of 3220 DEGs. Thyroid cancer was mostly associated with darkred, darkturquoise, and green modules. Venn screened 639 hub genes. Cytokine-cytokine receptor interaction was the primary KEGG enrichment. Hub genes were 14. Finally, ARHGAP6, TBC1D4, and TC2N were important genes. Through gene screening and functional enrichment analysis, we identified a group of genes related to TBC1D4 activating protein and constructed the corresponding protein interaction network.
Assuntos
Proteínas Ativadoras de GTPase , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Neoplasias da Glândula Tireoide , Humanos , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Progressão da Doença , Perfilação da Expressão Gênica , Biomarcadores Tumorais/genética , Bases de Dados Genéticas , Biologia Computacional/métodos , Mapas de Interação de Proteínas/genéticaRESUMO
Pancreatic cancer is characterized by its high malignancy, insidious onset and poor prognosis. Most patients with pancreatic cancer are usually diagnosed at advanced stage or with the distant metastasis due to the lack of an effective early screening method. Liquid biopsy technology is promising in studying the occurrence, progression, and early metastasis of pancreatic cancer. In particular, exosomes are pivotal biomarkers in lipid metabolism and liquid biopsy of blood exosomes is valuable for the evaluation of pancreatic cancer. Lipid metabolism is crucial for the formation and activity of exosomes in the extracellular environment. Exosomes and lipids have a complex relationship of mutual influence. Furthermore, spatial metabolomics can quantify the levels and spatial locations of individual metabolites in cancer tissue, cancer stroma, and para-cancerous tissue in pancreatic cancer. However, the relationship among exosomes, lipid metabolism, and pancreatic cancer is also worth considering. This study mainly updates the research progress of metabolomics in pancreatic cancer, their relationship with exosomes, an important part of liquid biopsy, and their lipometabolic roles in pancreatic cancer. We also discuss the mechanisms by which possible metabolites, especially lipid metabolites through exosome transport and other processes, contribute to the recurrence and metastasis of pancreatic cancer.
RESUMO
Objective: This study aimed to investigate the correlation between best corrected visual acuity (BCVA) and retinal microstructural parameters detected by optical coherence tomography (OCT) in diabetic retinopathy macular edema (DRME). Methods: Thirty-nine patients (64 eyes) with DRME were enrolled in this study. These patients underwent OCT to measure the fracture distance of the external limiting membrane (ELM), junction between the inner and outer segments (IS/OS), central foveal thickness (CFT), and edema layer. The correlation between the above parameters and BCVA was discussed. Results: CFT and the fracture distances of the ELM and IS/OS layers were negatively correlated with BCVA (p<0.05 for all). There was significant difference in Logarithm of the minimum angle of resolution (LogMAR) BCVA among patients with inner retinal edema, outer retinal edema, and mixed retinal edema (F = 5.57, p = 0.01). The LogMAR BCVA of inner retinal edema was the lowest (p < 0.05), and the LogMAR BCVA of outer retinal edema and mixed retinal edema were comparable (p > 0.05). Conclusion: In eyes with DRME, thin CFT, intact ELM and IS/OS layers, and edema in inner retina is closely correlated with good BCVA.