Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 215: 294-304, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29574207

RESUMO

Under limited time and resources, ecological managers are under increasing pressure to demonstrate tangible impact of monitoring activities. Value of Information (VOI) has been advocated as an ideal tool to evaluate whether more data is required to improve expected management outcomes. Yet, despite several recent works explaining its value, VOI remains seldom used in practice. Here we provide an example of a successful ecological application of VOI. We apply VOI to a novel multi-objective freshwater management problem and show how to make the best use of expert data through a robust sensitivity analysis. Unlike previous VOI approaches, our analysis provides statistical confidence to our recommendations. We apply our approach to the recovery of Moira grass (Pseudoraphis spinescens) plains, a threatened vegetation community at the Ramsar-listed Barmah Forest on the Murray River, Australia. Working closely with managers, we discovered that although many threats may impede Moira grass recovery, reducing grazing pressure and applying ideal depth and duration of flooding were most likely to lead to recovery. We found that learning from monitoring can significantly increase the existing extent of Moira grass, although these gains are modest compared to immediate management action. Our study shows how VOI can be used to demonstrate efficient use of limited environmental water to maximise ecological impact and increase transparency when making monitoring or management decisions. More broadly, the study methods will be of interest to any environmental manager who needs to prioritise monitoring and evaluation activities subject to a limited research budget. At a time where researchers and managers are asked to be more accountable for their decision-making, VOI provides a very accessible tool that can speed up the decision of whether to wait and collect more data or act immediately despite uncertainty.


Assuntos
Conservação dos Recursos Naturais , Tomada de Decisões , Água Doce , Austrália , Meio Ambiente , Incerteza
2.
Remote Sens (Basel) ; 13(15): 1-24, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-36817948

RESUMO

Water quality measures for inland and coastal waters are available as discrete samples from professional and volunteer water quality monitoring programs and higher-frequency, near-continuous data from automated in situ sensors. Water quality parameters also are estimated from model outputs and remote sensing. The integration of these data, via data assimilation, can result in a more holistic characterization of these highly dynamic ecosystems, and consequently improve water resource management. It is becoming common to see combinations of these data applied to answer relevant scientific questions. Yet, methods for scaling water quality data across regions and beyond, to provide actionable knowledge for stakeholders, have emerged only recently, particularly with the availability of satellite data now providing global coverage at high spatial resolution. In this paper, data sources and existing data integration frameworks are reviewed to give an overview of the present status and identify the gaps in existing frameworks. We propose an integration framework to provide information to user communities through the the Group on Earth Observations (GEO) AquaWatch Initiative. This aims to develop and build the global capacity and utility of water quality data, products, and information to support equitable and inclusive access for water resource management, policy and decision making.

3.
Sci Data ; 8(1): 200, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349102

RESUMO

Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change.

4.
Sci Rep ; 10(1): 20514, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239702

RESUMO

Globally, lake surface water temperatures have warmed rapidly relative to air temperatures, but changes in deepwater temperatures and vertical thermal structure are still largely unknown. We have compiled the most comprehensive data set to date of long-term (1970-2009) summertime vertical temperature profiles in lakes across the world to examine trends and drivers of whole-lake vertical thermal structure. We found significant increases in surface water temperatures across lakes at an average rate of + 0.37 °C decade-1, comparable to changes reported previously for other lakes, and similarly consistent trends of increasing water column stability (+ 0.08 kg m-3 decade-1). In contrast, however, deepwater temperature trends showed little change on average (+ 0.06 °C decade-1), but had high variability across lakes, with trends in individual lakes ranging from - 0.68 °C decade-1 to + 0.65 °C decade-1. The variability in deepwater temperature trends was not explained by trends in either surface water temperatures or thermal stability within lakes, and only 8.4% was explained by lake thermal region or local lake characteristics in a random forest analysis. These findings suggest that external drivers beyond our tested lake characteristics are important in explaining long-term trends in thermal structure, such as local to regional climate patterns or additional external anthropogenic influences.

5.
Sci Rep ; 9(1): 20351, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31889119

RESUMO

Despite the enticing discoveries of chaos in nature, triggers and drivers of this phenomenon remain a classical enigma which needs irrefutable empirical evidence. Here we analyze results of the yearlong replicated mesocosm experiment with multi-species plankton community that allowed revealing signs of chaos at different trophic levels in strictly controlled abiotic environment. In mesocosms without external stressors, we observed the "paradox of chaos" when biotic interactions (internal drivers) were acting as generators of internal abiotic triggers of complex plankton dynamics. Chaos was registered as episodes that vanished unpredictably or were substituted by complex behaviour of other candidates when longer time series were considered. Remarkably, episodes of chaos were detected even in the most abiotically stable conditions. We developed the Integral Chaos Indicator to validate the results of the Lyapunov exponent analysis. These findings are essential for modelling and forecasting behaviour of a variety of natural and other global systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA