Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(4): e1010946, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37099613

RESUMO

Fungi often adapt to environmental stress by altering their size, shape, or rate of cell division. These morphological changes require reorganization of the cell wall, a structural feature external to the cell membrane composed of highly interconnected polysaccharides and glycoproteins. Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that are typically secreted into the extracellular space to catalyze initial oxidative steps in the degradation of complex biopolymers such as chitin and cellulose. However, their roles in modifying endogenous microbial carbohydrates are poorly characterized. The CEL1 gene in the human fungal pathogen Cryptococcus neoformans (Cn) is predicted by sequence homology to encode an LPMO of the AA9 enzyme family. The CEL1 gene is induced by host physiological pH and temperature, and it is primarily localized to the fungal cell wall. Targeted mutation of the CEL1 gene revealed that it is required for the expression of stress response phenotypes, including thermotolerance, cell wall integrity, and efficient cell cycle progression. Accordingly, a cel1Δ deletion mutant was avirulent in two models of C. neoformans infection. Therefore, in contrast to LPMO activity in other microorganisms that primarily targets exogenous polysaccharides, these data suggest that CnCel1 promotes intrinsic fungal cell wall remodeling events required for efficient adaptation to the host environment.


Assuntos
Criptococose , Cryptococcus neoformans , Polissacarídeos Fúngicos , Termotolerância , Humanos , Oxigenases de Função Mista/genética , Virulência , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Polissacarídeos/metabolismo , Parede Celular/metabolismo
2.
Nat Chem Biol ; 16(3): 345-350, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31932718

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes that play a key role in the oxidative degradation of various biopolymers such as cellulose and chitin. While hunting for new LPMOs, we identified a new family of proteins, defined here as X325, in various fungal lineages. The three-dimensional structure of X325 revealed an overall LPMO fold and a His brace with an additional Asp ligand to Cu(II). Although LPMO-type activity of X325 members was initially expected, we demonstrated that X325 members do not perform oxidative cleavage of polysaccharides, establishing that X325s are not LPMOs. Investigations of the biological role of X325 in the ectomycorrhizal fungus Laccaria bicolor revealed exposure of the X325 protein at the interface between fungal hyphae and tree rootlet cells. Our results provide insights into a family of copper-containing proteins, which is widespread in the fungal kingdom and is evolutionarily related to LPMOs, but has diverged to biological functions other than polysaccharide degradation.


Assuntos
Cobre/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Sítios de Ligação , Celulose/metabolismo , Quitina/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Oxigenases de Função Mista/ultraestrutura , Oxirredução , Filogenia , Polissacarídeos/metabolismo
3.
Biochem Soc Trans ; 49(1): 531-540, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33449071

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are mononuclear copper enzymes that catalyse the oxidative cleavage of glycosidic bonds. They are characterised by two histidine residues that coordinate copper in a configuration termed the Cu-histidine brace. Although first identified in bacteria and fungi, LPMOs have since been found in all biological kingdoms. LPMOs are now included in commercial enzyme cocktails used in industrial biorefineries. This has led to increased process yield due to the synergistic action of LPMOs with glycoside hydrolases. However, the introduction of LPMOs makes control of the enzymatic step in industrial stirred-tank reactors more challenging, and the operational stability of the enzymes is reduced. It is clear that much is still to be learned about the interaction between LPMOs and their complex natural and industrial environments, and fundamental scientific studies are required towards this end. Several atomic-resolution structures have been solved providing detailed information on the Cu-coordination sphere and the interaction with the polysaccharide substrate. However, the molecular mechanisms of LPMOs are still the subject of intense investigation; the key question being how the proteinaceous environment controls the copper cofactor towards the activation of the O-O bond in O2 and cleavage of the glycosidic bonds in polysaccharides. The need for biochemical characterisation of each putative LPMO is discussed based on recent reports showing that not all proteins with a Cu-histidine brace are enzymes.


Assuntos
Enzimas/fisiologia , Histidina/análogos & derivados , Oxigenases de Função Mista/fisiologia , Compostos Organometálicos/química , Animais , Biotecnologia/métodos , Biotecnologia/tendências , Cobre/química , Enzimas/química , Enzimas/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/fisiologia , Histidina/química , Humanos , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Oxigênio/metabolismo , Polissacarídeos/metabolismo , Conformação Proteica , Espécies Reativas de Oxigênio/metabolismo , Especificidade por Substrato
4.
J Biol Chem ; 294(45): 17117-17130, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31471321

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are redox-enzymes involved in biomass degradation. All characterized LPMOs possess an active site of two highly conserved histidine residues coordinating a copper ion (the histidine brace), which are essential for LPMO activity. However, some protein sequences that belong to the AA9 LPMO family display a natural N-terminal His to Arg substitution (Arg-AA9). These are found almost entirely in the phylogenetic fungal class Agaricomycetes, associated with wood decay, but no function has been demonstrated for any Arg-AA9. Through bioinformatics, transcriptomic, and proteomic analyses we present data, which suggest that Arg-AA9 proteins could have a hitherto unidentified role in fungal degradation of lignocellulosic biomass in conjunction with other secreted fungal enzymes. We present the first structure of an Arg-AA9, LsAA9B, a naturally occurring protein from Lentinus similis The LsAA9B structure reveals gross changes in the region equivalent to the canonical LPMO copper-binding site, whereas features implicated in carbohydrate binding in AA9 LPMOs have been maintained. We obtained a structure of LsAA9B with xylotetraose bound on the surface of the protein although with a considerably different binding mode compared with other AA9 complex structures. In addition, we have found indications of protein phosphorylation near the N-terminal Arg and the carbohydrate-binding site, for which the potential function is currently unknown. Our results are strong evidence that Arg-AA9s function markedly different from canonical AA9 LPMO, but nonetheless, may play a role in fungal conversion of lignocellulosic biomass.


Assuntos
Histidina , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Ligantes , Oxigenases de Função Mista/genética , Modelos Moleculares , Fosforilação , Filogenia
5.
Biochem Soc Trans ; 46(6): 1431-1447, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30381341

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are copper enzymes discovered within the last 10 years. By degrading recalcitrant substrates oxidatively, these enzymes are major contributors to the recycling of carbon in nature and are being used in the biorefinery industry. Recently, two new families of LPMOs have been defined and structurally characterized, AA14 and AA15, sharing many of previously found structural features. However, unlike most LPMOs to date, AA14 degrades xylan in the context of complex substrates, while AA15 is particularly interesting because they expand the presence of LPMOs from the predominantly microbial to the animal kingdom. The first two neutron crystallography structures have been determined, which, together with high-resolution room temperature X-ray structures, have putatively identified oxygen species at or near the active site of LPMOs. Many recent computational and experimental studies have also investigated the mechanism of action and substrate-binding mode of LPMOs. Perhaps, the most significant recent advance is the increasing structural and biochemical evidence, suggesting that LPMOs follow different mechanistic pathways with different substrates, co-substrates and reductants, by behaving as monooxygenases or peroxygenases with molecular oxygen or hydrogen peroxide as a co-substrate, respectively.


Assuntos
Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Animais , Parede Celular/metabolismo , Cristalografia por Raios X , Oxigenases de Função Mista/química , Oxirredução , Plantas/química , Plantas/metabolismo , Polissacarídeos/química , Especificidade por Substrato
6.
Nat Chem Biol ; 12(4): 298-303, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26928935

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes that oxidatively break down recalcitrant polysaccharides such as cellulose and chitin. Since their discovery, LPMOs have become integral factors in the industrial utilization of biomass, especially in the sustainable generation of cellulosic bioethanol. We report here a structural determination of an LPMO-oligosaccharide complex, yielding detailed insights into the mechanism of action of these enzymes. Using a combination of structure and electron paramagnetic resonance spectroscopy, we reveal the means by which LPMOs interact with saccharide substrates. We further uncover electronic and structural features of the enzyme active site, showing how LPMOs orchestrate the reaction of oxygen with polysaccharide chains.


Assuntos
Celulose/metabolismo , Quitina/metabolismo , Oxigenases de Função Mista/metabolismo , Sequência de Aminoácidos , Aspergillus oryzae/enzimologia , Aspergillus oryzae/genética , Sítios de Ligação , Domínio Catalítico , Cobre/metabolismo , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Lentinula/enzimologia , Lentinula/genética , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Modelos Moleculares , Dados de Sequência Molecular , Oligossacarídeos/química , Oxirredução , Especificidade por Substrato
7.
Biochem Soc Trans ; 44(1): 143-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26862199

RESUMO

The recent discovery of copper-dependent lytic polysaccharide mono-oxygenases (LPMOs) has opened up a vast area of research covering several fields of application. The biotech company Novozymes A/S holds patents on the use of these enzymes for the conversion of steam-pre-treated plant residues such as straw to free sugars. These patents predate the correct classification of LPMOs and the striking synergistic effect of fungal LPMOs when combined with canonical cellulases was discovered when fractions of fungal secretomes were evaluated in industrially relevant enzyme performance assays. Today, LPMOs are a central component in the Cellic CTec enzyme products which are used in several large-scale plants for the industrial production of lignocellulosic ethanol. LPMOs are characterized by an N-terminal histidine residue which, together with an internal histidine and a tyrosine residue, co-ordinates a single copper atom in a so-called histidine brace. The mechanism by which oxygen binds to the reduced copper atom has been reported and the general mechanism of copper-oxygen-mediated activation of carbon is being investigated in the light of these discoveries. LPMOs are widespread in both the fungal and the bacterial kingdoms, although the range of action of these enzymes remains to be elucidated. However, based on the high abundance of LPMOs expressed by microbes involved in the decomposition of organic matter, the importance of LPMOs in the natural carbon-cycle is predicted to be significant. In addition, it has been suggested that LPMOs play a role in the pathology of infectious diseases such as cholera and to thus be relevant in the field of medicine.


Assuntos
Indústrias , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Biocombustíveis , Etanol/metabolismo , Especificidade por Substrato
8.
Biotechnol Lett ; 38(3): 425-34, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26543036

RESUMO

OBJECTIVES: Efficient enzymatic saccharification of plant cell wall material is key to industrial processing of agricultural and forestry waste such as straw and wood chips into fuels and chemicals. RESULTS: Saccharification assays were performed on steam-pretreated wheat straw under ambient and O2-deprived environments and in the absence and presence of a lytic polysaccharide monooxygenase (LPMO) and catalase. A kinetic model was used to calculate catalytic rate and first-order inactivation rate constants of the cellulases from reaction progress curves. The addition of a LPMO significantly (P < 0.01, Student's T test) enhanced the rate of glucose release from 2.8 to 6.9 h(-1) under ambient O2 conditions. However, this also significantly (P < 0.01, Student's T test) increased the rate of inactivation of the enzyme mixture, thereby reducing the performance half-life from 65 to 35 h. Decreasing O2 levels or, strikingly, the addition of catalase significantly reduced (P < 0.01, Student's T test) enzyme inactivation and, as a consequence, higher efficiency of the cellulolytic enzyme cocktail was achieved. CONCLUSION: Oxidative inactivation of commercial cellulase mixtures is a significant factor influencing the overall saccharification efficiency and the addition of catalase can be used to protect these mixtures from inactivation.


Assuntos
Catalase/metabolismo , Glucose/metabolismo , Lignina/metabolismo , Oxigenases de Função Mista/metabolismo , Celulases/metabolismo , Cinética , Oxirredução , Caules de Planta/metabolismo , Triticum/metabolismo
9.
Front Microbiol ; 14: 1128470, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998406

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are industrially relevant enzymes that utilize a copper co-factor and an oxygen species to break down recalcitrant polysaccharides. These enzymes are secreted by microorganisms and are used in lignocellulosic refineries. As such, they are interesting from both the ecological/biological and industrial perspectives. Here we describe the development of a new fluorescence-based kinetic LPMO activity assay. The assay is based on the enzymatic production of fluorescein from its reduced counterpart. The assay can detect as little as 1 nM LPMO with optimized assay conditions. Furthermore, the reduced fluorescein substrate can also be used to identify peroxidase activity as seen by the formation of fluorescein by horseradish peroxidase. The assay was shown to work well at relatively low H2O2 and dehydroascorbate concentrations. The applicability of the assay was demonstrated.

10.
Nat Commun ; 14(1): 4202, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452022

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are oxidative enzymes that help break down lignocellulose, making them highly attractive for improving biomass utilization in industrial biotechnology. The catalytically essential N-terminal histidine (His1) of LPMOs is post-translationally modified by methylation in filamentous fungi to protect them from auto-oxidative inactivation, however, the responsible methyltransferase enzyme is unknown. Using mass-spectrometry-based quantitative proteomics in combination with systematic CRISPR/Cas9 knockout screening in Aspergillus nidulans, we identify the N-terminal histidine methyltransferase (NHMT) encoded by the gene AN4663. Targeted proteomics confirm that NHMT was solely responsible for His1 methylation of LPMOs. NHMT is predicted to encode a unique seven-transmembrane segment anchoring a soluble methyltransferase domain. Co-localization studies show endoplasmic reticulum residence of NHMT and co-expression in the industrial production yeast Komagataella phaffii with LPMOs results in His1 methylation of the LPMOs. This demonstrates the biotechnological potential of recombinant production of proteins and peptides harbouring this specific post-translational modification.


Assuntos
Histidina , Oxigenases de Função Mista , Oxigenases de Função Mista/metabolismo , Histidina/genética , Histidina/metabolismo , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Polissacarídeos/metabolismo , Processamento de Proteína Pós-Traducional
11.
Elife ; 112022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36206043

RESUMO

How does a protein at the cell wall determine if a newly encountered fungus is safe to fuse with?


Assuntos
Neurospora crassa , Parede Celular/metabolismo , Neurospora crassa/metabolismo
12.
IUCrJ ; 9(Pt 5): 666-681, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36071795

RESUMO

The recently discovered lytic polysaccharide monooxygenases (LPMOs) are Cu-containing enzymes capable of degrading polysaccharide substrates oxidatively. The generally accepted first step in the LPMO reaction is the reduction of the active-site metal ion from Cu2+ to Cu+. Here we have used a systematic diffraction data collection method to monitor structural changes in two AA9 LPMOs, one from Lentinus similis (LsAA9_A) and one from Thermoascus auranti-acus (TaAA9_A), as the active-site Cu is photoreduced in the X-ray beam. For LsAA9_A, the protein produced in two different recombinant systems was crystallized to probe the effect of post-translational modifications and different crystallization conditions on the active site and metal photoreduction. We can recommend that crystallographic studies of AA9 LPMOs wishing to address the Cu2+ form use a total X-ray dose below 3 × 104 Gy, while the Cu+ form can be attained using 1 × 106 Gy. In all cases, we observe the transition from a hexa-coordinated Cu site with two solvent-facing ligands to a T-shaped geometry with no exogenous ligands, and a clear increase of the θ2 parameter and a decrease of the θ3 parameter by averages of 9.2° and 8.4°, respectively, but also a slight increase in θT. Thus, the θ2 and θ3 parameters are helpful diagnostics for the oxidation state of the metal in a His-brace protein. On binding of cello-oligosaccharides to LsAA9_A, regardless of the production source, the θT parameter increases, making the Cu site less planar, while the active-site Tyr-Cu distance decreases reproducibly for the Cu2+ form. Thus, the θT increase found on copper reduction may bring LsAA9_A closer to an oligosaccharide-bound state and contribute to the observed higher affinity of reduced LsAA9_A for cellulosic substrates.

13.
Front Plant Sci ; 12: 717776, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34650579

RESUMO

The production of regenerated cellulosic fibres, such as viscose, modal and lyocell, is based mainly on the use of dissolving wood pulp as raw material. Enzymatic processes are an excellent alternative to conventional chemical routes in the production of dissolving pulp, in terms of energy efficiency, reagent consumption and pulp yield. The two main characteristics of a dissolving pulp are the cellulose purity and the molecular weight, both of which can be controlled with the aid of enzymes. A purification process for paper-grade kraft pulp has been proposed, based on the use of xylanases in combination with hot and cold caustic extraction, without the conventional pre-hydrolysis step before kraft pulping. This enzyme aided purification allowed the production of a dissolving pulp that met the specifications for the manufacture of viscose, < 3% xylan, > 92% ISO brightness and 70% Fock's reactivity. Endoglucanases (EGs) can efficiently reduce the average molecular weight of the cellulose while simultaneously increasing the pulp reactivity for viscose production. It is shown in this study that lytic polysaccharide monooxygenases act synergistically with EGs in the modification of bleached dissolving pulp.

14.
ACS Synth Biol ; 10(4): 897-906, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33797234

RESUMO

Environmentally friendly sources of energy and chemicals are essential constituents of a sustainable society. An important step toward this goal is the utilization of biomass to supply building blocks for future biorefineries. Lytic polysaccharide monooxygenases (LPMOs) are enzymes that play a critical role in breaking the chemical bonds in the most abundant polymers found in recalcitrant biomass, such as cellulose and chitin. To use them in industrial processes they need to be produced in high titers in cell factories. Predicting optimal strategies for producing LPMOs is often nontrivial, and methods allowing for screening several strategies simultaneously are therefore needed. Here, we present a standardized platform for cloning LPMOs. The platform allows users to combine gene fragments with 14 different expression vectors in a simple 15 min reaction, thus enabling rapid exploration of several gene contexts, hosts, and expression strategies in parallel. The open-source LyGo platform is accompanied by easy-to-follow online protocols for both cloning and expression. As a demonstration of its utility, we explore different strategies for expressing several different LPMOs in Escherichia coli, Bacillus subtilis, and Komagataella phaffii.


Assuntos
Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Bacillus subtilis/metabolismo , Escherichia coli/metabolismo , Saccharomycetales/metabolismo
15.
Biotechnol Biofuels ; 14(1): 51, 2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33640002

RESUMO

BACKGROUND: Lytic polysaccharide monooxygenases (LPMOs) are important industrial enzymes known for their catalytic degradation of recalcitrant polymers such as cellulose or chitin. Their activity can be measured by lengthy HPLC methods, while high-throughput methods are less specific. A fast and specific LPMO assay would simplify screening for new or engineered LPMOs and accelerate biochemical characterization. RESULTS: A novel LPMO activity assay was developed based on the production of the dye phenolphthalein (PHP) from its reduced counterpart (rPHP). The colour response of rPHP oxidisation catalysed by the cellulose-specific LPMO from Thermoascus aurantiacus (TaAA9A), was found to increase tenfold by adding dehydroascorbate (DHA) as a co-substrate. The assay using a combination of rPHP and DHA was tested on 12 different metallo-enzymes, but only the LPMOs catalysed this reaction. The assay was optimized for characterization of TaAA9A and showed a sensitivity of 15 nM after 30 min incubation. It followed apparent Michaelis-Menten kinetics with kcat = 0.09 s-1 and KM = 244 µM, and the assay was used to confirm stoichiometric copper-enzyme binding and enzyme unfolding at a temperature of approximately 60 °C. DHA, glutathione and fructose were found to enhance LPMO oxidation of rPHP and in the optimized assay conditions these co-substrates also enabled cellulose degradation. CONCLUSIONS: This novel and specific LPMO assay can be carried out in a convenient microtiter plate format ready for high-throughput screening and enzyme characterization. DHA was the best co-substrate tested for oxidation of rPHP and this preference appears to be LPMO-specific. The identified co-substrates DHA and fructose are not normally considered as LPMO co-substrates but here they are shown to facilitate both oxidation of rPHP and degradation of cellulose. This is a rare example of a finding from a high-throughput assay that directly translate into enzyme activity on an insoluble substrate. The rPHP-based assay thus expands our understanding of LPMO catalysed reactions and has the potential to characterize LPMO activity in industrial settings, where usual co-substrates such as ascorbate and oxygen are depleted.

16.
FEBS Lett ; 595(12): 1708-1720, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33896006

RESUMO

The histidine brace (His-brace) is a copper-binding motif that is associated with both oxidative enzymes and proteinaceous copper chaperones. Here, we used biochemical and structural methods to characterize mutants of a His-brace-containing copper chaperone from Pseudomonas fluorescens (PfCopC). A total of 15 amino acid variants in primary and second-sphere residues were produced and characterized in terms of their copper binding and redox properties. PfCopC has a very high affinity for Cu(II) and also binds Cu(I). A high reorganization barrier likely prevents redox cycling and, thus, catalysis. In contrast, mutations in the conserved second-sphere Glu27 enable slow oxidation of ascorbate. The crystal structure of the variant E27A confirmed copper binding at the His-brace. Unexpectedly, Asp83 at the equatorial position was shown to be indispensable for Cu(II) binding in the His-brace of PfCopC. A PfCopC mutant that was designed to mimic the His-brace from lytic polysaccharide monooxygenase-like family X325 did not bind Cu(II), but was still able to bind Cu(I). These results highlight the importance of the proteinaceous environment around the copper His-brace for reactivity and, thus, the difference between enzyme and chaperone.


Assuntos
Substituição de Aminoácidos , Proteínas de Bactérias/química , Cobre/química , Chaperonas Moleculares/química , Mutação de Sentido Incorreto , Pseudomonas fluorescens/química , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Histidina/química , Histidina/genética , Histidina/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo
17.
Appl Microbiol Biotechnol ; 86(1): 143-54, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19756584

RESUMO

A GH3 beta-glucosidase (BGL) from Penicillium brasilianum was purified to homogeneity after cultivation on a cellulose and xylan rich medium. The BGL was identified in a genomic library, and it was successfully expressed in Aspergillus oryzae. The BGL had excellent stability at elevated temperatures with no loss in activity after 24 h of incubation at 60 degrees C at pH 4-6, and the BGL was shown to have significantly higher stability at these conditions in comparison to Novozym 188 and to other fungal GH3 BGLs reported in the literature. The BGL had significant lower affinity for cellobiose compared with the artificial substrate para-nitrophenyl-beta-D-glucopyranoside (pNP-Glc) and further, pronounced substrate inhibition using pNP-Glc. Kinetic studies demonstrated the high importance of using cellobiose as substrate and glucose as inhibitor to describe the inhibition kinetics of BGL taking place during cellulose hydrolysis. A novel assay was developed to characterize this glucose inhibition on cellobiose hydrolysis. The assay uses labelled glucose-13C6 as inhibitor and subsequent mass spectrometry analysis to quantify the hydrolysis rates.


Assuntos
Celulose/metabolismo , Penicillium/enzimologia , beta-Glucosidase , Aspergillus oryzae/enzimologia , Aspergillus oryzae/genética , Biotecnologia/métodos , Celulose/química , Meios de Cultura , Estabilidade Enzimática , Biblioteca Gênica , Glucose/química , Glucose/farmacologia , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Penicillium/genética , Penicillium/crescimento & desenvolvimento , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Temperatura , Xilanos/metabolismo , beta-Glucosidase/genética , beta-Glucosidase/isolamento & purificação , beta-Glucosidase/metabolismo
18.
Sci Rep ; 10(1): 16369, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004835

RESUMO

Lytic polysaccharide monooxygenase (LPMO) and copper binding protein CopC share a similar mononuclear copper site. This site is defined by an N-terminal histidine and a second internal histidine side chain in a configuration called the histidine brace. To understand better the determinants of reactivity, the biochemical and structural properties of a well-described cellulose-specific LPMO from Thermoascus aurantiacus (TaAA9A) is compared with that of CopC from Pseudomonas fluorescens (PfCopC) and with the LPMO-like protein Bim1 from Cryptococcus neoformans. PfCopC is not reduced by ascorbate but is a very strong Cu(II) chelator due to residues that interacts with the N-terminus. This first biochemical characterization of Bim1 shows that it is not redox active, but very sensitive to H2O2, which accelerates the release of Cu ions from the protein. TaAA9A oxidizes ascorbate at a rate similar to free copper but through a mechanism that produce fewer reactive oxygen species. These three biologically relevant examples emphasize the diversity in how the proteinaceous environment control reactivity of Cu with O2.


Assuntos
Cobre/metabolismo , Histidina/metabolismo , Modelos Moleculares , Oxigenases/metabolismo , Escherichia coli , Peróxido de Hidrogênio/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Oxirredução
19.
Biotechnol Biofuels ; 11: 165, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29946356

RESUMO

BACKGROUND: The bioconversion of lignocellulosic feedstocks to ethanol is being commercialised, but further process development is required to improve their economic feasibility. Efficient saccharification of lignocellulose to fermentable sugars requires oxidative cleavage of glycosidic linkages by lytic polysaccharide monooxygenases (LPMOs). However, a proper understanding of the catalytic mechanism of this enzyme class and the interaction with other redox processes associated with the saccharification of lignocellulose is still lacking. The in-use stability of LPMO-containing enzyme cocktails is increased by the addition of catalase implying that hydrogen peroxide (H2O2) is generated in the slurry during incubation. Therefore, we sought to characterize the effects of enzymatic and abiotic sources of H2O2 on lignocellulose hydrolysis to identify parameters that could improve this process. Moreover, we studied the abiotic redox reactions of steam-pretreated wheat straw as a function of temperature and dry-matter (DM) content. RESULTS: Abiotic reactions in pretreated wheat straw consume oxygen, release carbon dioxide (CO2) to the slurry, and decrease the pH. The magnitude of these reactions increased with temperature and with DM content. The presence of LPMO during saccharification reduced the amount of CO2 liberated, while the effect on pH was insignificant. Catalase led to increased decarboxylation through an unknown mechanism. Both in situ-generated and added H2O2 caused a decrease in pH. CONCLUSIONS: Abiotic redox processes similar to those that occur in natural water-logged environments also affect the saccharification of pretreated lignocellulose. Heating of the lignocellulosic material and adjustment of pH trigger rapid oxygen consumption and acidification of the slurry. In industrial settings, it will be of utmost importance to control these processes. LPMOs interact with the surrounding redox compounds and redirect abiotic electron flow from decarboxylating reactions to fuel the oxidative cleavage of glycosidic bonds in cellulose.

20.
Acta Crystallogr D Struct Biol ; 73(Pt 1): 64-76, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28045386

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are a class of copper-dependent enzymes discovered within the last ten years. They oxidatively cleave polysaccharides (chitin, lignocellulose, hemicellulose and starch-derived), presumably making recalcitrant substrates accessible to glycoside hydrolases. Recently, the first crystal structure of an LPMO-substrate complex was reported, giving insights into the interaction of LPMOs with ß-linked substrates (Frandsen et al., 2016). The LPMOs acting on α-linked glycosidic bonds (family AA13) display binding surfaces that are quite different from those of LPMOs that act on ß-linked glycosidic bonds (families AA9-AA11), as revealed from the first determined structure (Lo Leggio et al., 2015), and thus presumably the AA13s interact with their substrate in a distinct fashion. Here, several new structures of the same AA13 enzyme, Aspergillus oryzae AA13, are presented. Crystals obtained in the presence of high zinc-ion concentrations were used, as they can be obtained more reproducibly than those used to refine the deposited copper-containing structure. One structure with an ordered zinc-bound active site was solved at 1.65 Šresolution, and three structures from crystals soaked with maltooligosaccharides in solutions devoid of zinc ions were solved at resolutions of up to 1.10 Å. Despite similar unit-cell parameters, small rearrangements in the crystal packing occur when the crystals are depleted of zinc ions, resulting in a more occluded substrate-binding surface. In two of the three structures maltooligosaccharide ligands are bound, but not at the active site. Two of the structures presented show a His-ligand conformation that is incompatible with metal-ion binding. In one of these structures this conformation is the principal one (80% occupancy), giving a rare atomic resolution view of a substantially misfolded enzyme that is presumably rendered inactive.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA