Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Cell Tissue Res ; 381(1): 141-161, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32065263

RESUMO

Foetal onset hydrocephalus is a disease starting early in embryonic life; in many cases it results from a cell junction pathology of neural stem (NSC) and neural progenitor (NPC) cells forming the ventricular zone (VZ) and sub-ventricular zone (SVZ) of the developing brain. This pathology results in disassembling of VZ and loss of NSC/NPC, a phenomenon known as VZ disruption. At the cerebral aqueduct, VZ disruption triggers hydrocephalus while in the telencephalon, it results in abnormal neurogenesis. This may explain why derivative surgery does not cure hydrocephalus. NSC grafting appears as a therapeutic opportunity. The present investigation was designed to find out whether this is a likely possibility. HTx rats develop hereditary hydrocephalus; 30-40% of newborns are hydrocephalic (hyHTx) while their littermates are not (nHTx). NSC/NPC from the VZ/SVZ of nHTx rats were cultured into neurospheres that were then grafted into a lateral ventricle of 1-, 2- or 7-day-old hyHTx. Once in the cerebrospinal fluid, neurospheres disassembled and the freed NSC homed at the areas of VZ disruption. A population of homed cells generated new multiciliated ependyma at the sites where the ependyma was missing due to the inherited pathology. Another population of NSC homed at the disrupted VZ differentiated into ßIII-tubulin+ spherical cells likely corresponding to neuroblasts that progressed into the parenchyma. The final fate of these cells could not be established due to the protocol used to label the grafted cells. The functional outcomes of NSC grafting in hydrocephalus remain open. The present study establishes an experimental paradigm of NSC/NPC therapy of foetal onset hydrocephalus, at the etiologic level that needs to be further explored with more analytical methodologies.


Assuntos
Hidrocefalia/terapia , Células-Tronco Neurais/transplante , Animais , Diferenciação Celular , Proliferação de Células , Neurogênese , Ratos
2.
BMC Neurosci ; 12: 4, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21214926

RESUMO

BACKGROUND: Because the choroid plexus (CP) is uniquely suited to control the composition of cerebrospinal fluid (CSF), there may be therapeutic benefits to increasing the levels of biologically active proteins in CSF to modulate central nervous system (CNS) functions. To this end, we sought to identify peptides capable of ligand-mediated targeting to CP epithelial cells reasoning that they could be exploited to deliver drugs, biotherapeutics and genes to the CNS. METHODS: A peptide library displayed on M13 bacteriophage was screened for ligands capable of internalizing into CP epithelial cells by incubating phage with CP explants for 2 hours at 37C and recovering particles with targeting capacity. RESULTS: Three peptides, identified after four rounds of screening, were analyzed for specific and dose dependent binding and internalization. Binding was deemed specific because internalization was prevented by co-incubation with cognate synthetic peptides. Furthermore, after i.c.v. injection into rat brains, each peptide was found to target phage to epithelial cells in CP and to ependyma lining the ventricles. CONCLUSION: These data demonstrate that ligand-mediated targeting can be used as a strategy for drug delivery to the central nervous system and opens the possibility of using the choroid plexus as a portal of entry into the brain.


Assuntos
Ventrículos Cerebrais/metabolismo , Plexo Corióideo/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Epêndima/metabolismo , Células Epiteliais/metabolismo , Biblioteca de Peptídeos , Animais , Células Cultivadas , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Ventrículos Cerebrais/efeitos dos fármacos , Plexo Corióideo/efeitos dos fármacos , Epêndima/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Feminino , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Peptídeos/administração & dosagem , Ratos , Ratos Sprague-Dawley , Ratos Wistar
3.
Cerebrospinal Fluid Res ; 7: 14, 2010 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-20731822

RESUMO

The Kearns-Sayre syndrome is a mitochondrial disorder (generally due to mitochondrial DNA deletions) that causes ophthalmoplegia, retinopathy, ataxia and brain abnormalities such as leukoencephalopathy. In this syndrome, the choroid plexus epithelial cells, unlike brain cells, are greatly enlarged and granular, consistent with their inability to adequately transport folate from blood into cerebrospinal fluid (CSF), and homovanillic acid (a dopamine metabolite) from CSF into blood. This inability to transport folates from blood into CSF (and brain) adequately, causes cerebral folate deficiency that can be partially reversed by very high doses of reduced folates. The Kearns-Sayre syndrome is a disease that interferes with key choroid plexus functions and is a cause of generalized choroid plexus failure.

4.
Cerebrospinal Fluid Res ; 7: 13, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20707896

RESUMO

BACKGROUND: Adult rat hypothalamo-pituitary axis and choroid plexus are rich in basic fibroblast growth factor (FGF2) which likely has a role in fluid homeostasis. Towards this end, we characterized the distribution and modulation of FGF2 in the human and rat central nervous system. To ascertain a functional link between arginine vasopressin (AVP) and FGF2, a rat model of chronic dehydration was used to test the hypothesis that FGF2 expression, like that of AVP, is altered by perturbed fluid balance. METHODS: Immunohistochemistry and confocal microscopy were used to examine the distribution of FGF2 and AVP neuropeptides in the normal human brain. In order to assess effects of chronic dehydration, Sprague-Dawley rats were water deprived for 3 days. AVP neuropeptide expression and changes in FGF2 distribution in the brain, neural lobe of the pituitary and kidney were assessed by immunohistochemistry, and western blotting (FGF2 isoforms). RESULTS: In human hypothalamus, FGF2 and AVP were co-localized in the cytoplasm of supraoptic and paraventricular magnocellular neurons and axonal processes. Immunoreactive FGF2 was associated with small granular structures distributed throughout neuronal cytoplasm. Neurohypophysial FGF2 immunostaining was found in axonal processes, pituicytes and Herring bodies. Following chronic dehydration in rats, there was substantially-enhanced FGF2 staining in basement membranes underlying blood vessels, pituicytes and other glia. This accompanied remodeling of extracellular matrix. Western blot data revealed that dehydration increased expression of the hypothalamic FGF2 isoforms of ca. 18, 23 and 24 kDa. In lateral ventricle choroid plexus of dehydrated rats, FGF2 expression was augmented in the epithelium (Ab773 as immunomarker) but reduced interstitially (Ab106 immunostaining). CONCLUSIONS: Dehydration altered FGF2 expression patterns in AVP-containing magnocellular neurons and neurohypophysis, as well as in choroid plexus epithelium. This supports the involvement of centrally-synthesized FGF2, putatively coupled to that of AVP, in homeostatic mechanisms that regulate fluid balance.

5.
Pharm Res ; 27(10): 2054-62, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20473558

RESUMO

In the last decade, there has been substantial progress in understanding vectorial ligand transport through rodent and human choroid plexus (CP), the locus of the blood-CSF interface. In this Review, we enumerate the experimental data required to establish vectorial transport through CP and describe transporters involved in vectorial transport across CP. We also note how these transporters differ from those at the blood-brain barrier. The ligand (substrate) examples presented are methyltetrahydrofolate, methotrexate, leukotriene C(4), nucleosides, thiamine monophosphate, prostaglandins, and digoxin. Our focus is on more definitive experiments, including animal and human transporter "knock-outs." Finally, we discuss the neurochemical implications of vectorial transport through CP and the clinical implications of transporter polymorphisms and knockouts. Examples include descriptions of how vectorial transport through the CP for several micronutrients (e.g., methyltetrahydrofolate) nourishes the brain and how knowledge of CP vectorial transport can lead to important treatments.


Assuntos
Barreira Hematoencefálica/metabolismo , Plexo Corióideo/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Preparações Farmacêuticas/sangue , Preparações Farmacêuticas/líquido cefalorraquidiano , Animais , Transporte Biológico , Humanos , Ligantes , Especificidade por Substrato
6.
Acta Neurochir Suppl ; 106: 321-5, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19812972

RESUMO

The possibility that Cerebrolysin, a mixture of several neurotrophic factors, has some neuroprotective effects on whole body hyperthermia (WBH) induced breakdown of the blood-brain barrier (BBB), blood-CSF barrier (BCSFB), brain edema formation and neuropathology were examined in a rat model. Rats subjected to a 4 h heat stress at 38 degrees C in a biological oxygen demand (BOD) incubator exhibited profound increases in BBB and BCSFB permeability to Evans blue and radioiodine tracers compared to controls. Hippocampus, caudate nucleus, thalamus and hypothalamus exhibited pronounced increase in water content and brain pathology following 4 h heat stress. Pretreatment with Cerebrolysin (1, 2 or 5 mL/kg i.v.) 24 h before WBH significantly attenuated breakdown of the BBB or BCSFB and brain edema formation. This effect was dose dependent. Interestingly, the cell and tissue injury following WBH in cerebrolysin-treated groups were also considerably reduced. These novel observations suggest that cerebrolysin can attenuate WBH induced BBB and BCSFB damage resulting in neuroprotection.


Assuntos
Aminoácidos/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Febre/patologia , Fármacos Neuroprotetores/farmacologia , Aminoácidos/uso terapêutico , Análise de Variância , Animais , Barreira Hematoencefálica/fisiopatologia , Edema Encefálico/tratamento farmacológico , Edema Encefálico/etiologia , Modelos Animais de Doenças , Febre/complicações , Febre/tratamento farmacológico , Masculino , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Wistar , Fatores de Tempo
7.
J Neuropathol Exp Neurol ; 79(6): 626-640, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32417932

RESUMO

Choroid plexus (CP) may aid brain development and repair by secreting growth factors and neurotrophins for CSF streaming to ventricular and subventricular zones. Disrupted ventricular/subventricular zone progenitors and stem cells lead to CNS maldevelopment. Exploring models, we organ cultured the CP and transplanted fresh CP into a lateral ventricle of postnatal hydrocephalic (hyHTx) and nonhydrocephalic (nHTx) rats. After 60 days in vitro, the cultured choroid ependyma formed spherical rings with beating cilia. Cultured CP expressed endocytotic caveolin 1 and apical aquaporin 1 and absorbed horseradish peroxidase from medium. Transthyretin secretory protein was secreted by organ-cultured CP into medium throughout 60 days in vitro. Fresh CP, surviving at 1 week after lateral ventricle implantation of nHTx or hyHTx did not block CSF flow. Avascular 1-week transplants in vivo expressed caveolin 1, aquaporin 1, and transthyretin, indicating that grafted CP may secrete trophic proteins but not CSF. Our findings encourage further exploration on CP organ culture and grafting for translational strategies. Because transplanted CP, though not producing CSF, may secrete beneficial molecules for developing brain injured by hydrocephalus, we propose that upon CP removal in hydrocephalus surgery, the fractionated tissue could be transplanted back (ventricular autograft).


Assuntos
Plexo Corióideo , Hidrocefalia/cirurgia , Ventrículos Laterais/cirurgia , Enxerto Vascular/métodos , Animais , Modelos Animais de Doenças , Técnicas de Cultura de Órgãos , Ratos , Resultado do Tratamento
8.
Semin Oncol ; 36(4 Suppl 2): S46-54, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19660683

RESUMO

Secondary involvement of the leptomeninges represents an infrequent but devastating (and nearly always fatal) complication of solid tumors, hematologic malignancies (both leukemia and lymphoma), and primary brain tumors. Clinical suspicion of neoplastic meningitis (NM) may be raised by the appearance of multivariate neurological symptoms; however, a definitive diagnosis is often difficult to obtain. Improved treatments for primary malignancies and advances in diagnostic imaging technology have led to an apparent increase in the number of patients diagnosed with NM. Unfortunately, therapeutic options remain limited, particularly for patients with chemoresistant tumors. Optimized treatment remains controversial and may rely upon a combination of chemotherapy (intrathecal and/or intravenous) and concurrent focal radiotherapy. This review discusses the advantages and disadvantages of intra-cerebrospinal fluid (CSF) versus systemic strategies for treating NM. Clinical trial evidence is presented for the different treatment modalities. In addition, the therapeutic potential of intra-CSF therapy for cancer prophylaxis is discussed. Earlier diagnosis and more aggressive preventive treatment regimens may provide substantial increases in survival and favorably affect quality of life. Additional data from large-scale, well-controlled trials are required to more accurately assess the efficacy of intra-CSF versus systemic treatment in NM. Future treatment options using novel targets for intra-CSF therapy will be addressed as well.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Carcinomatose Meníngea/tratamento farmacológico , Carcinomatose Meníngea/secundário , Plexo Corióideo/fisiologia , Humanos , Injeções Espinhais/métodos
9.
Cerebrospinal Fluid Res ; 6: 4, 2009 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-19470163

RESUMO

BACKGROUND: Previous studies in aging animals have shown that amyloid-beta protein (Abeta) accumulates and its transporters, low-density lipoprotein receptor-related protein-1 (LRP-1) and the receptor for advanced glycation end products (RAGE) are impaired during hydrocephalus. Furthermore, correlations between astrocytes and Abeta have been found in human cases of normal pressure hydrocephalus (NPH) and Alzheimer's disease (AD). Because hydrocephalus occurs frequently in children, we evaluated the expression of Abeta and its transporters and reactive astrocytosis in animals with neonatal hydrocephalus. METHODS: Hydrocephalus was induced in neonatal rats by intracisternal kaolin injections on post-natal day one, and severe ventriculomegaly developed over a three week period. MRI was performed on post-kaolin days 10 and 21 to document ventriculomegaly. Animals were sacrificed on post-kaolin day 21. For an age-related comparison, tissue was used from previous studies when hydrocephalus was induced in a group of adult animals at either 6 months or 12 months of age. Tissue was processed for immunohistochemistry to visualize LRP-1, RAGE, Abeta, and glial fibrillary acidic protein (GFAP) and with quantitative real time reverse transcriptase polymerase chain reaction (qRT-PCR) to quantify expression of LRP-1, RAGE, and GFAP. RESULTS: When 21-day post-kaolin neonatal hydrocephalic animals were compared to adult (6-12 month old) hydrocephalic animals, immunohistochemistry demonstrated levels of Abeta, RAGE, and LRP-1 that were substantially lower in the younger animals; in contrast, GFAP levels were elevated in both young and old hydrocephalic animals. When the neonatal hydrocephalic animals were compared to age-matched controls, qRT-PCR demonstrated no significant changes in Abeta, LRP-1 and RAGE. However, immunohistochemistry showed very small increases or decreases in individual proteins. Furthermore, qRT-PCR indicated statistically significant increases in GFAP. CONCLUSION: Neonatal rats with and without hydrocephalus had low expression of Abeta and its transporters when compared to adult rats with hydrocephalus. No statistical differences were observed in Abeta and its transporters between the control and hydrocephalic neonatal animals.

10.
J Neuropathol Exp Neurol ; 67(4): 261-70, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18379441

RESUMO

There is increasing evidence for blood-brain barrier (BBB) compromise in Alzheimer disease (AD). The presence of the epsilon4 allele of the apolipoprotein E (apoE) gene is a risk factor for sporadic AD. Apolipoprotein E is essential both for maintenance of BBB integrity and for the deposition of fibrillar amyloid-beta (Abeta) that leads to the development of Abeta plaques in AD and to cerebral amyloid angiopathy. This review investigates the relationships between apoE, Abeta, and the BBB in AD. Alterations in the expression and distribution of the BBB Abeta transporters receptor for advanced glycation end-products and low-density lipoprotein receptor-related protein 1 in AD and the potential roles of apoE4 expression in adversely influencing Abeta burden and BBB permeability are also examined. Because both apoE and Abeta are ligands for low-density lipoprotein receptor-related protein 1, all 3 molecules are present in AD plaques, and most AD plaques are located close to the cerebral microvasculature. The interactions of these molecules at the BBB likely influence metabolism and clearance of Abeta and contribute to AD pathogenesis. Therapeutic alternatives targeting apoE/Abeta and sealing a compromised BBB are under development for the treatment of AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E/metabolismo , Barreira Hematoencefálica/fisiopatologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/genética , Animais , Apolipoproteínas E/genética , Permeabilidade Capilar/fisiologia , Humanos
11.
Stroke ; 39(3): 814-21, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18258839

RESUMO

BACKGROUND AND PURPOSE: We examined the associations among the vascular beta-amyloid levels, smooth muscle actin, wall thickness, and lumen diameter to achieve greater understanding of the arteriolar changes that accompany Alzheimer disease (AD). METHODS: Post-mortem pathology brain specimens from 76 patients with AD and 19 non-AD age control subjects were studied. We analyzed arterioles of the frontal cortex (Brodmann area 10) by immunohistochemistry and morphometry, and derived measures of vascular beta-amyloid level, smooth muscle actin (SMA) volume, and arteriolar wall thickness and lumen diameter. APOE genotype was determined for each case. RESULTS: Overall, there was a striking reciprocal relationship between arteriolar beta-amyloid volume and smooth muscle actin (P<0.0001). In addition, there was a strong positive association between progressively accumulating vascular beta-amyloid and augmentations in both wall thickness (P<0.0001) and lumen width (P<0.0001). In comparison with non-AD control subjects, smooth muscle actin was decreased in patients clinically diagnosed with AD and was reduced >10-fold in cases with AD pathology (Braak I to VI) compared with those lacking AD neuropathology. Significantly altered composition and structure of cortical vessels in pre-Braak stages corroborated our hypothesis that arterioles are devastated early in the AD pathological process. Smooth muscle actin, arteriolar wall thickness, and luminal diameter did not vary with Braak stage severity (P>0.05), indicating that substantial arteriolar damage may precede at least some of the interstitial plaques and neuronal tangles. Moreover, the structural and biochemical arteriolar abnormalities did not vary as a function of APOE genotype (P>0.05). CONCLUSIONS: We postulate that in elderly patients, the continually progressing beta-amyloid-associated angiopathy, at the arteriolar level, harms the contractile apparatus and cerebral blood flow autoregulation, thereby making the downstream capillaries vulnerable to damage. Collectively, our observations lend further support to the idea that microvascular damage has a role, perhaps relatively early, in the onset of major AD pathology.


Assuntos
Actinas/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E/genética , Lobo Frontal/irrigação sanguínea , Músculo Liso Vascular/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Arteríolas/metabolismo , Arteríolas/patologia , Cadáver , Feminino , Genótipo , Humanos , Imuno-Histoquímica , Masculino , Músculo Liso Vascular/patologia , Índice de Gravidade de Doença
12.
Brain Res ; 1230: 273-80, 2008 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-18657529

RESUMO

Microvascular accumulation and neuronal overproduction of amyloid-beta peptide (Abeta) are pathologic features of Alzheimer's disease (AD). In this study, we examined the receptor for advanced glycation endproducts (RAGE), a multi-ligand receptor found in both neurons and cerebral microvascular endothelia that binds Abeta. RAGE expression was assessed in aged controls (n = 6), patients with early AD-like pathology (n = 6), and severe, Braak V-VI AD (n = 6). Human hippocampi were stained with a specific polyclonal antibody directed against RAGE (Research Diagnostics, Flanders, NJ). Immunoreactivity was localized in both neurons and cerebral endothelial cells. Quantitative image-analyses were performed on grayscale images to assess the total surface area of endothelial RAGE immunoreaction product in cross sections of cerebral microvessels (5-20 microm). Confocal images were acquired for confirmation of RAGE immunoreactivity in both microvessels and neurons by coupling RAGE with CD-31 and neurofilament, respectively. A significant increase in endothelial RAGE immunoreactivity was found in severe Braak V-VI AD patients when compared to aged controls (p < 0.001), and when compared to patients with early AD pathology (p = 0.0125). In addition, a significant increase in endothelial RAGE immunoreactivity was witnessed when comparing aged controls having no reported AD pathology with patients having early AD-like pathology (p = 0.038). Our data suggest that microvascular RAGE levels increase in conjunction with the onset of AD, and continue to increase linearly as a function of AD pathologic severity (p < 0.0001).


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Receptores Imunológicos/metabolismo , Idoso , Idoso de 80 Anos ou mais , Amiloide/metabolismo , Progressão da Doença , Feminino , Imunofluorescência , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Masculino , Microcirculação/fisiologia , Pessoa de Meia-Idade , Receptor para Produtos Finais de Glicação Avançada
13.
Cerebrospinal Fluid Res ; 5: 10, 2008 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-18479516

RESUMO

UNLABELLED: This review integrates eight aspects of cerebrospinal fluid (CSF) circulatory dynamics: formation rate, pressure, flow, volume, turnover rate, composition, recycling and reabsorption. Novel ways to modulate CSF formation emanate from recent analyses of choroid plexus transcription factors (E2F5), ion transporters (NaHCO3 cotransport), transport enzymes (isoforms of carbonic anhydrase), aquaporin 1 regulation, and plasticity of receptors for fluid-regulating neuropeptides. A greater appreciation of CSF pressure (CSFP) is being generated by fresh insights on peptidergic regulatory servomechanisms, the role of dysfunctional ependyma and circumventricular organs in causing congenital hydrocephalus, and the clinical use of algorithms to delineate CSFP waveforms for diagnostic and prognostic utility. Increasing attention focuses on CSF flow: how it impacts cerebral metabolism and hemodynamics, neural stem cell progression in the subventricular zone, and catabolite/peptide clearance from the CNS. The pathophysiological significance of changes in CSF volume is assessed from the respective viewpoints of hemodynamics (choroid plexus blood flow and pulsatility), hydrodynamics (choroidal hypo- and hypersecretion) and neuroendocrine factors (i.e., coordinated regulation by atrial natriuretic peptide, arginine vasopressin and basic fibroblast growth factor). In aging, normal pressure hydrocephalus and Alzheimer's disease, the expanding CSF space reduces the CSF turnover rate, thus compromising the CSF sink action to clear harmful metabolites (e.g., amyloid) from the CNS. Dwindling CSF dynamics greatly harms the interstitial environment of neurons. Accordingly the altered CSF composition in neurodegenerative diseases and senescence, because of adverse effects on neural processes and cognition, needs more effective clinical management. CSF recycling between subarachnoid space, brain and ventricles promotes interstitial fluid (ISF) convection with both trophic and excretory benefits. Finally, CSF reabsorption via multiple pathways (olfactory and spinal arachnoidal bulk flow) is likely complemented by fluid clearance across capillary walls (aquaporin 4) and arachnoid villi when CSFP and fluid retention are markedly elevated. A model is presented that links CSF and ISF homeostasis to coordinated fluxes of water and solutes at both the blood-CSF and blood-brain transport interfaces. OUTLINE: 1 Overview2 CSF formation2.1 Transcription factors2.2 Ion transporters2.3 Enzymes that modulate transport2.4 Aquaporins or water channels2.5 Receptors for neuropeptides3 CSF pressure3.1 Servomechanism regulatory hypothesis3.2 Ontogeny of CSF pressure generation3.3 Congenital hydrocephalus and periventricular regions3.4 Brain response to elevated CSF pressure3.5 Advances in measuring CSF waveforms4 CSF flow4.1 CSF flow and brain metabolism4.2 Flow effects on fetal germinal matrix4.3 Decreasing CSF flow in aging CNS4.4 Refinement of non-invasive flow measurements5 CSF volume5.1 Hemodynamic factors5.2 Hydrodynamic factors5.3 Neuroendocrine factors6 CSF turnover rate6.1 Adverse effect of ventriculomegaly6.2 Attenuated CSF sink action7 CSF composition7.1 Kidney-like action of CP-CSF system7.2 Altered CSF biochemistry in aging and disease7.3 Importance of clearance transport7.4 Therapeutic manipulation of composition8 CSF recycling in relation to ISF dynamics8.1 CSF exchange with brain interstitium8.2 Components of ISF movement in brain8.3 Compromised ISF/CSF dynamics and amyloid retention9 CSF reabsorption9.1 Arachnoidal outflow resistance9.2 Arachnoid villi vs. olfactory drainage routes9.3 Fluid reabsorption along spinal nerves9.4 Reabsorption across capillary aquaporin channels10 Developing translationally effective models for restoring CSF balance11 Conclusion.

14.
Fluids Barriers CNS ; 15(1): 34, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30541599

RESUMO

BACKGROUND: The roles of the choroid plexus (CP) and cerebrospinal fluid (CSF) production have drawn increasing attention in Alzheimer's disease (AD) research. Specifically, studies document markedly decreased CSF production and turnover in moderate-to-severe AD. Moreover, reduced CP function and CSF turnover lead to impaired clearance of toxic metabolites, likely promote neuroinflammation, and may facilitate neuronal death during AD progression. We analyzed CP gene expression in AD compared with control subjects, specifically considering those genes involved with CSF production and CP structural integrity. METHODS: The Brown-Merck Gene Expression Omnibus (GEO) database (CP transcripts) was mined to examine changes in gene expression in AD compared to controls with a focus on assorted genes thought to play a role in CSF production. Specifically, genes coding for ion transporters in CP epithelium (CPE) and associated enzymes like Na-K-ATPase and carbonic anhydrase, aquaporins, mitochondrial transporters/enzymes, blood-cerebrospinal fluid barrier (BCSFB) stability proteins, and pro-inflammatory mediators were selected for investigation. Data were analyzed using t test p-value and fold-change analysis conducted by the GEO2R feature of the GEO database. RESULTS: Significant expression changes for several genes were observed in AD CP. These included disruptions to ion transporters (e.g., the solute carrier gene SLC4A5, p = 0.004) and associated enzyme expressions (e.g., carbonic anhydrase CA4, p = 0.0001), along with decreased expression of genes involved in BCSFB integrity (e.g., claudin CLDN5, p = 0.039) and mitochondrial ATP synthesis (e.g., adenosine triphosphate ATP5L, p = 0.0004). Together all changes point to disrupted solute transport at the blood-CSF interface in AD. Increased expression of pro-inflammatory (e.g., interleukin IL1RL1, p = 0.00001) and potential neurodegenerative genes (e.g., amyloid precursor APBA3, p = 0.002) also implicate disturbed CP function. CONCLUSIONS: Because the altered expression of numerous transcripts in AD-CP help explain decreased CSF production in AD, these findings represent a first step towards identifying novel therapeutic targets in AD.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/genética , Encéfalo/metabolismo , Plexo Corióideo/metabolismo , Doença de Alzheimer/metabolismo , Barreira Hematoencefálica/metabolismo , Bases de Dados Factuais , Expressão Gênica , Perfilação da Expressão Gênica , Homeostase , Humanos , Transporte de Íons
15.
Front Aging Neurosci ; 10: 245, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30186149

RESUMO

Background: The pathophysiology underlying altered blood-cerebrospinal fluid barrier (BCSFB) function in Alzheimer's disease (AD) is unknown but may relate to endothelial cell activation and cytokine mediated inflammation. Methods: Cerebrospinal fluid (CSF) and peripheral blood were concurrently collected from cognitively healthy controls (N = 21) and patients with mild cognitive impairment (MCI) (N = 8) or AD (N = 11). The paired serum and CSF samples were assayed for a panel of cytokines, chemokines, and related trophic factors using multiplex ELISAs. Dominance analysis models were conducted to determine the relative importance of the inflammatory factors in relationship to BCSFB permeability, as measured by CSF/serum ratios for urea, creatinine, and albumin. Results: BCSFB disruption to urea, a small molecule distributed by passive diffusion, had a full model coefficient of determination (r2) = 0.35, and large standardized dominance weights (>0.1) for monocyte chemoattractant protein-1, interleukin (IL)-15, IL-1rα, and IL-2 in serum. BCSFB disruption to creatinine, a larger molecule governed by active transport, had a full model r2 = 0.78, and large standardized dominance weights for monocyte inhibitor protein-1b in CSF and tumor necrosis factor-α in serum. BCSFB disruption to albumin, a much larger molecule, had a full model r2 = 0.62, and large standardized dominance weights for IL-17a, interferon-gamma, IL-2, and VEGF in CSF, as well IL-4 in serum. Conclusions: Inflammatory proteins have been widely documented in the AD brain. The results of the current study suggest that changes in BCSFB function resulting in altered permeability and transport are related to expression of specific inflammatory proteins, and that the shifting distribution of these proteins from serum to CSF in AD and MCI is correlated with more severe perturbations in BCSFB function.

16.
EMBO Mol Med ; 10(4)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29472246

RESUMO

Alzheimer's disease (AD) is the most common form of dementia, and neuroinflammation is an important hallmark of the pathogenesis. Tumor necrosis factor (TNF) might be detrimental in AD, though the results coming from clinical trials on anti-TNF inhibitors are inconclusive. TNFR1, one of the TNF signaling receptors, contributes to the pathogenesis of AD by mediating neuronal cell death. The blood-cerebrospinal fluid (CSF) barrier consists of a monolayer of choroid plexus epithelial (CPE) cells, and AD is associated with changes in CPE cell morphology. Here, we report that TNF is the main inflammatory upstream mediator in choroid plexus tissue in AD patients. This was confirmed in two murine AD models: transgenic APP/PS1 mice and intracerebroventricular (icv) AßO injection. TNFR1 contributes to the morphological damage of CPE cells in AD, and TNFR1 abrogation reduces brain inflammation and prevents blood-CSF barrier impairment. In APP/PS1 transgenic mice, TNFR1 deficiency ameliorated amyloidosis. Ultimately, genetic and pharmacological blockage of TNFR1 rescued from the induced cognitive impairments. Our data indicate that TNFR1 is a promising therapeutic target for AD treatment.


Assuntos
Doença de Alzheimer/metabolismo , Plexo Corióideo/citologia , Plexo Corióideo/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Doença de Alzheimer/genética , Animais , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase em Tempo Real , Receptores Tipo I de Fatores de Necrose Tumoral/genética
17.
Fluids Barriers CNS ; 15(1): 18, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29848382

RESUMO

BACKGROUND: In Alzheimer's disease, there are striking changes in CSF composition that relate to altered choroid plexus (CP) function. Studying CP tissue gene expression at the blood-cerebrospinal fluid barrier could provide further insight into the epithelial and stromal responses to neurodegenerative disease states. METHODS: Transcriptome-wide Affymetrix microarrays were used to determine disease-related changes in gene expression in human CP. RNA from post-mortem samples of the entire lateral ventricular choroid plexus was extracted from 6 healthy controls (Ctrl), 7 patients with advanced (Braak and Braak stage III-VI) Alzheimer's disease (AD), 4 with frontotemporal dementia (FTD) and 3 with Huntington's disease (HuD). Statistics and agglomerative clustering were accomplished with MathWorks, MatLab; and gene set annotations by comparing input sets to GeneGo ( http://www.genego.com ) and Ingenuity ( http://www.ingenuity.com ) pathway sets. Bonferroni-corrected hypergeometric p-values of < 0.1 were considered a significant overlap between sets. RESULTS: Pronounced differences in gene expression occurred in CP of advanced AD patients vs. Ctrls. Metabolic and immune-related pathways including acute phase response, cytokine, cell adhesion, interferons, and JAK-STAT as well as mTOR were significantly enriched among the genes upregulated. Methionine degradation, claudin-5 and protein translation genes were downregulated. Many gene expression changes in AD patients were observed in FTD and HuD (e.g., claudin-5, tight junction downregulation), but there were significant differences between the disease groups. In AD and HuD (but not FTD), several neuroimmune-modulating interferons were significantly enriched (e.g., in AD: IFI-TM1, IFN-AR1, IFN-AR2, and IFN-GR2). AD-associated expression changes, but not those in HuD and FTD, were enriched for upregulation of VEGF signaling and immune response proteins, e.g., interleukins. HuD and FTD patients distinctively displayed upregulated cadherin-mediated adhesion. CONCLUSIONS: Our transcript data for human CP tissue provides genomic and mechanistic insight for differential expression in AD vs. FTD vs. HuD for stromal as well as epithelial components. These choroidal transcriptome characterizations elucidate immune activation, tissue functional resiliency, and CSF metabolic homeostasis. The BCSFB undergoes harmful, but also important functional and adaptive changes in neurodegenerative diseases; accordingly, the enriched JAK-STAT and mTOR pathways, respectively, likely help the CP in adaptive transcription and epithelial repair and/or replacement when harmed by neurodegeneration pathophysiology. We anticipate that these precise CP translational data will facilitate pharmacologic/transgenic therapies to alleviate dementia.


Assuntos
Doença de Alzheimer/metabolismo , Plexo Corióideo/metabolismo , Demência Frontotemporal/metabolismo , Doença de Huntington/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Expressão Gênica , Homeostase/fisiologia , Humanos , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Transcriptoma
18.
Ann N Y Acad Sci ; 1122: 112-29, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18077568

RESUMO

Previous studies from our laboratory show that apart from blood-brain barrier (BBB) disruption, the blood-cerebrospinal fluid (CSF) barrier (BCSFB) for proteins is also broken down following whole-body hyperthermia (WBH) in a rat model. Breakdown of the BCSFB alters brain homeostasis and adversely affects the structure and function of the central nervous system (CNS). Since neurotrophins and growth factors (e.g., brain-derived growth factor [BDNF], glial cell line-derived neurotrophic factor [GDNF], and insulin-like growth factor 1 [IGF-1]) are known neuroprotective agents in traumatic and ischemic brain injuries, a possibility exists that these neurotrophins will also attenuate neuronal and choroidal injury in WBH. Subjection of adult rats to 4 h of WBH at 38 degrees C in a biological oxygen demand (BOD) incubator exhibited a profound increase in BCSFB permeability to Evans blue and radioiodine. Degeneration of choroidal epithelial cells and underlying ependyma, dilatation of the lateral ventricular space, and degenerative changes in the adjacent neuropil were frequent. The hippocampus, caudate nucleus, thalamus, and hypothalamus showed profound BBB disruption and brain edema formation. Intracerebroventricular (i.c.v.) administration of BDNF, GDNF, and IGF-1 into the right lateral cerebral ventricle (1, 2, or 5 microg in 30 microL, 24 h before WBH) significantly reduced the BCSFB and BBB breakdown, brain edema formation, and cellular/tissue injuries. These beneficial effects were most pronounced in GDNF- or IGF-1-pretreated animals. These novel observations suggest that neurotrophins administered into ventricular CSF can attenuate BCSFB and BBB damage following WBH and thereby confer neuroprotection. Stabilization of BCSFB function is thus one of the crucial factors in achieving neuroprotection in WBH.


Assuntos
Barreira Hematoencefálica , Encéfalo/patologia , Hipertermia Induzida/efeitos adversos , Fatores de Crescimento Neural/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Estresse Fisiológico , Análise de Variância , Animais , Comportamento Animal/fisiologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/fisiopatologia , Temperatura Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/ultraestrutura , Edema Encefálico/etiologia , Edema Encefálico/prevenção & controle , Modelos Animais de Doenças , Azul Evans , Injeções Intraventriculares/métodos , Masculino , Microscopia Eletrônica de Transmissão/métodos , Ratos , Ratos Sprague-Dawley , Estresse Fisiológico/complicações , Estresse Fisiológico/etiologia , Estresse Fisiológico/patologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-27990492

RESUMO

Expression of the orphan C2orf40 gene is associated with the aggregation of the neurofibrillary tangle-protein tau in transgenic mice, tumor suppression, the induction of senescence in CNS, and the activation of microglia and peripheral mononuclear leukocytes. This gene also encodes several secreted pro- and anti-inflammatory neuropeptide-like cytokines, suggesting they might be implicated in the inflammatory component(s) of Alzheimer's disease (AD). Accordingly, we evaluated human AD and control brains for expression changes by RT-qPCR, Western blot, and histological changes by immunolabeling. RT-qPCR demonstrated increased cortical gene expression in AD. The molecular form of Ecrg4 detected in cortex was 8-10 kDa, which was shown previously to interact with the innate immunity receptor complex. Immunocytochemical studies showed intensely stained microglia and intravascular blood-borne monocytes within cerebral cortical white matter of AD patients. Staining was diminished within cortical neurons, except for prominent staining in neurofibrillary tangles. Choroid plexuses showed a decreasing trend. These findings support our hypothesis that c2orf40 participates in the neuroimmune response in AD.

20.
Exp Neurol ; 273: 57-68, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26247808

RESUMO

In this review, a companion piece to our recent examination of choroid plexus (CP), the organ that secretes the cerebrospinal fluid (CSF), we focus on recent information in the context of reliable older data concerning the composition and functions of adult human CSF. To accomplish this, we define CSF, examine the methodology employed in studying the CSF focusing on ideal or near ideal experiments and discuss the pros and cons of several widely used analogical descriptions of the CSF including: the CSF as the "third circulation," the CSF as a "nourishing liquor," the similarities of the CSF/choroid plexus to the glomerular filtrate/kidney and finally the CSF circulation as part of the "glymphatic system." We also consider the close interrelationship between the CSF and extracellular space of brain through gap junctions and the paucity of data suggesting that the cerebral capillaries secrete a CSF-like fluid. Recently human CSF has been shown to be in dynamic flux with heart-beat, posture and especially respiration. Functionally, the CSF provides buoyancy, nourishment (e.g., vitamins) and endogenous waste product removal for the brain by bulk flow into the venous (arachnoid villi and nerve roots) and lymphatic (nasal) systems, and by carrier-mediated reabsorptive transport systems in CP. The CSF also presents many exogenous compounds to CP for metabolism or removal, indirectly cleansing the extracellular space of brain (e.g., of xenobiotics like penicillin). The CSF also carries hormones (e.g., leptin) from blood via CP or synthesized in CP (e.g., IGF-2) to the brain. In summary the CP/CSF, the third circulation, performs many functions comparable to the kidney including nourishing the brain and contributing to a stable internal milieu for the brain. These tasks are essential to normal adult brain functioning.


Assuntos
Líquido Cefalorraquidiano/metabolismo , Plexo Corióideo/fisiologia , Adulto , Espaço Extracelular/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA