Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 251: 109594, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31557668

RESUMO

Activated sludge (AS) and return activated sludge (RAS) microbial communities from three full-scale municipal wastewater treatment plants (denoted plant A, B and C) were compared to assess the impact of sludge settling (i.e. gravity thickening in the clarifier) and profile microorganisms responsible for nutrient removal and reactor foaming. The results show that all three plants were dominated with microbes in the phyla of Proteobacteria, Bacteroidetes, Verrucomicrobia, Actinobacteria, Chloroflexi, Firmicutes, Nitrospirae, Spirochaetae, Acidobacteria and Saccharibacteria. AS and RAS shared above 80% similarity in the microbial community composition, indicating that sludge thickening does not significantly alter the microbial composition. Autotrophic and heterotrophic nitrifiers were present in the AS. However, the abundance of autotrophic nitrifiers was significantly lower than that of the heterotrophic nitrifiers. Thus, ammonium removal at these plants was achieved mostly by heterotrophic nitrification. Microbes that can cause foaming were at 3.2% abundance, and this result is well corroborated with occasional aerobic biological reactor foaming. By contrast, these microbes were not abundant (<2.1%) at plant A and C, where aerobic biological reactor foaming has not been reported.


Assuntos
Microbiota , Esgotos , Reatores Biológicos , Nitrificação , RNA Ribossômico 16S , Eliminação de Resíduos Líquidos , Águas Residuárias
2.
J Environ Manage ; 239: 235-243, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30903835

RESUMO

Arsenic is a major drinking water contaminant in many countries causing serious health hazards, and therefore, attempts are being made to remove it so that people have safe drinking water supplies. The effectiveness of arsenic removal from As(V) solutions using granular activated carbon (GAC) (zero point of charge (ZPC) pH 3.2) and iron incorporated GAC (GAC-Fe) (ZPC pH 8.0) was studied at 25 ±â€¯1 °C. The batch study confirmed that GAC-Fe had higher Langmuir adsorption capacity at pH 6 (1.43 mg As/g) than GAC (1.01 mg As/g). Adsorption data of GAC-Fe fitted the Freundlich model better than the Langmuir model, thus indicating the presence of heterogeneous adsorption sites. Weber and Morris plots of the kinetic adsorption data suggested intra-particle diffusion into meso and micro pores in GAC. The column adsorption study revealed that 2-4 times larger water volumes can be treated by GAC-Fe than GAC, reducing the arsenic concentration from 100 µg/L to the WHO guideline of 10 µg/L. The volume of water treated increased with a decrease in flow velocity and influent arsenic concentration. The study indicates the high potential of GAC-Fe to remove arsenic from contaminated drinking waters in practical column filters.


Assuntos
Arsênio , Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal , Ferro
3.
Adv Sci (Weinh) ; : e2401322, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704683

RESUMO

Recent advances in solar-driven interfacial evaporation (SDIE) have led to high evaporation rates that open promising avenues for practical utilization in freshwater production and industrial application for pollutant and nutrient concentration, and resource recovery. Breakthroughs in overcoming the theoretical limitation of 2D interfacial evaporation have allowed for developing systems with high evaporation rates. This study presents a comprehensive review of various evaporator designs that have achieved pure evaporation rates beyond 4 kg m-2 h-1, including structural and material designs allowing for rapid evaporation, passive 3D designs, and systems coupled with alternative energy sources of wind and joule heating. The operational mechanisms for each design are outlined together with discussion on the current benefits and areas for improvement. The overarching challenges encountered by SDIE concerning the feasibility of direct integration into contemporary practical settings are assessed, and issues relating to sustaining elevated evaporation rates under diverse environmental conditions are addressed.

4.
Sci Total Environ ; 917: 170423, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38281644

RESUMO

This study reports a facile technique to synthesize and tune the cationic polymer, poly(3-acrylamidopropyl)trimethylammonium chloride (PAPTAC), in terms of molecular weight and surface change for harvesting three microalgae species (Scenedesmus sp., P.purpureum, and C. vulgaris). The PAPTAC polymer was synthesised by UV-induced free-radical polymerisation. Polymer tuning was demonstrated by regulating the monomer concentration (60 to 360 mg/mL) and UV power (36 and 60 W) for polymerisation. The obtained PAPTAC polymer was evaluated for harvesting three different microalgae species and compared to a commercially available polymer. The highest flocculation efficiency for Scenedesmus sp. and P. purpureum was observed at a dosage of 25 mg-polymer/g of dry biomass by using PAPTAC-90, resulting in higher flocculation efficiency than the commercial polymer. Results in this study show evidence of effective neutralisation of the negative charge surface of microalgae cells by the produced cationic PAPTAC polymer and polymer bridging for effective flocculation. The obtained PAPTAC polymer was less effective for harvesting C. vulgaris, possibly due to other factors such as cell morphology and composition of extracellular polymeric substances of at the cell membrane that may also influence harvesting performance.


Assuntos
Microalgas , Scenedesmus , Polímeros/metabolismo , Cátions/metabolismo , Floculação , Biomassa
5.
Membranes (Basel) ; 13(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36837638

RESUMO

Reverse osmosis concentrate (ROC) produced as the by-product of the reverse osmosis process consists of a high load of organics (macro and micro) that potentially cause eco-toxicological effects in the environment. Previous studies focused on the removal of such compounds using oxidation, adsorption, and membrane-based treatments. However, these methods were not always efficient and formed toxic by-products. The impact of ion-exchange resin (IEX) (Purolite®A502PS) was studied in a micro-filtration-IEX hybrid system to remove organics from ROC for varying doses of Purolite® A502PS (5-20 g/L) at a flux of 36 L/m2h. The purolite particles in the membrane reactor reduced membrane fouling, evidenced by the reduction of transmembrane pressure (TMP), by pre-adsorbing the organics, and by mechanically scouring the membrane. The dissolved organic carbon was reduced by 45-60%, out of which 48-81% of the hydrophilics were removed followed by the hydrophobics and low molecular weight compounds (LMWs). This was based on fluorescence excitation-emission matrix and liquid chromatography-organic carbon detection. Negatively charged and hydrophobic organic compounds were preferentially removed by resin. Long-term experiments with different daily replacements of resin are suggested to minimize the resin requirements and energy consumption.

6.
Chemosphere ; 343: 140255, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37741367

RESUMO

The interplay between CO2 input and light intensity is investigated to provide new insight to optimise microalgae growth rate in photobioreactors for environmental remediation, carbon capture, and biomass production. Little is known about the combined effect of carbon metabolism and light intensity on microalgae growth. In this study, carbonated water was transferred to the microalgae culture at different rates and under different light intensities for observing the carbon composition and growth rate. Results from this study reveal opposing effects from CO2 input and light intensity on the culture solution pH and ultimately microalgae growth rate. Excessive CO2 concentration can inhibit microalgae growth due to acidification caused by CO2 dissolution. While increasing light intensity can increase pH because the carboxylation process consumes photons and transfers hydrogen ions into the cell. This reaction is catalysed by the enzyme RuBisCO, which functions optimally within a specific pH range. By balancing CO2 input and light intensity, high microalgae growth rate and carbon capture could be achieved. Under the intermittent CO2 transfer mode, at the optimal condition of 850 mg/L CO2 input and 1089 µmol/m2/s light intensity, leading to the highest microalgae growth rate and carbon fixation of 4.2 g/L as observed in this study.

7.
Membranes (Basel) ; 12(8)2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-36005695

RESUMO

Submerged microfiltration has a wide range of applications in water and wastewater treatment. Membrane fouling is a major problem, resulting in a severe decline in flux, high energy consumption and frequent membrane cleaning and replacement. The effect of viscosity was not previously studied under controlled conditions to relate it to the air scour. Hence, this study investigated the effect of viscosity on membrane fouling during the operation of submerged membrane microfiltration by adding predetermined amounts of glycerol to a kaolin clay suspension. The addition of glycerol increased the viscosity (from 0.001 to 0.003 Pa·s), resulting in a 3-fold higher transmembrane pressure (TMP) development. An increased airflow (air scour) rate by 3 fold (from 0.6 m3/m2/h to 1.8 m3/m2/h), reduced TMP development by 65%. Membrane fouling quickly developed during the initial stage of microfiltration operation. Therefore, special precautions to control fouling during the early stages of filtration could significantly enhance the operation of the microfilter. Higher airflow caused a reduction in average specific cake resistance, whereas higher viscosity increased this value.

8.
Bioresour Technol ; 343: 126069, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34606926

RESUMO

This study aims to evaluate the performance of C. vulgaris microalgae to simultaneously recover nutrients from sludge centrate and produce biomass in a membrane photobioreactor (MPR). Microalgae growth and nutrient removal were evaluated at two different nutrient loading rates (sludge centrate). The results show that C. vulgaris microalgae could thrive in sludge centrate. Nutrient loading has an indiscernible impact on biomass growth and a notable impact on nutrient removal efficiency. Nutrient removal increased as the nutrient loading rate decreased and hydraulic retention time increased. There was no membrane fouling observed in the MPR and the membrane water flux was fully restored by backwashing using only water. However, the membrane permeability varies with the hydraulic retention time (HRT) and biomass concentration in the reactor. Longer HRT offers higher permeability. Therefore, it is recommended to operate the MPR system in lower HRT to improve the membrane resistance and energy consumption.


Assuntos
Fotobiorreatores , Esgotos , Biomassa , Nutrientes , Águas Residuárias/análise
9.
Environ Sci Pollut Res Int ; 29(22): 32651-32669, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35220520

RESUMO

The skyrocketing demand and progressive technology have increased our dependency on electrical and electronic devices. However, the life span of these devices has been shortened because of rapid scientific expansions. Hence, massive volumes of electronic waste (e-waste) is generating day by day. Nevertheless, the ongoing management of e-waste has emerged as a major threat to sustainable economic development worldwide. In general, e-waste contains several toxic substances such as metals, plastics, and refractory oxides. Metals, particularly lead, mercury, nickel, cadmium, and copper along with some valuable metals such as rare earth metals, platinum group elements, alkaline and radioactive metal are very common; which can be extracted before disposing of the e-waste for reuse. In addition, many of these metals are hazardous. Therefore, e-waste management is an essential issue. In this study, we critically have reviewed the existing extraction processes and compared among different processes such as physical, biological, supercritical fluid technologies, pyro and hydrometallurgical, and hybrid methods used for metals extraction from e-waste. The review indicates that although each method has particular merits but hybrid methods are eco-friendlier with extraction efficiency > 90%. This study also provides insight into the technical challenges to the practical realization of metals extraction from e-waste sources.


Assuntos
Resíduo Eletrônico , Gerenciamento de Resíduos , Resíduo Eletrônico/análise , Metais , Plásticos , Reciclagem/métodos , Gerenciamento de Resíduos/métodos
10.
Bioresour Technol ; 341: 125847, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34467893

RESUMO

Addition of conductive materials (CMs) has been reported to facilitate direct interspecies electron transfer (DIET) and improved anaerobic digestion (AD) performance. This review summarises the benefits and outlines remaining research challenges of the addition of CMs with a focus on the downstream processing of AD. CM addition may alter biogas quality, digestate dewaterability, biosolids volume, and centrate quality. Better biogas quality has been observed due to the adsorption of H2S to metallic CMs. The addition of CMs results in an increase in solid content of the digestate and thus an additional requirement for sludge dewatering and handling and the final biosolids volume for disposal. This review highlights the need for more research at pilot scale to validate the benefits of CM addition and to evaluate CM selection, doses, material costs, and the impact on downstream processes. The lack of research on the impact of CMs on the downstream process of AD is highlighted.


Assuntos
Reatores Biológicos , Metano , Anaerobiose , Elétrons , Esgotos
11.
Sci Total Environ ; 743: 140630, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679491

RESUMO

An effective pretreatment is the first step to enhance the digestibility of lignocellulosic biomass - a source of renewable, eco-friendly and energy-dense materials - for biofuel and biochemical productions. This review aims to provide a comprehensive assessment on the advantages and disadvantages of lignocellulosic pretreatment techniques, which have been studied at the lab-, pilot- and full-scale levels. Biological pretreatment is environmentally friendly but time consuming (i.e. 15-40 days). Chemical pretreatment is effective in breaking down lignocellulose and increasing sugar yield (e.g. 4 to 10-fold improvement) but entails chemical cost and expensive reactors. Whereas the combination of physical and chemical (i.e. physicochemical) pretreatment is energy intensive (e.g. energy production can only compensate 80% of the input energy) despite offering good process efficiency (i.e. > 100% increase in product yield). Demonstrations of pretreatment techniques (e.g. acid, alkaline, and hydrothermal) in pilot-scale have reported 50-80% hemicellulose solubilisation and enhanced sugar yields. The feasibility of these pilot and full-scale plants has been supported by government subsidies to encourage biofuel consumption (e.g. tax credits and mandates). Due to the variability in their mechanisms and characteristics, no superior pretreatment has been identified. The main challenge lies in the capability to achieve a positive energy balance and great economic viability with minimal environmental impacts i.e. the energy or product output significantly surpasses the energy and monetary input. Enhancement of the current pretreatment techno-economic efficiency (e.g. higher product yield, chemical recycling, and by-products conversion to increase environmental sustainability) and the integration of pretreatment methods to effectively treat a range of biomass will be the steppingstone for commercial lignocellulosic biorefineries.


Assuntos
Biocombustíveis , Lignina , Biomassa , Açúcares
12.
Bioresour Technol ; 312: 123571, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32502890

RESUMO

This study evaluates the feasibility of a novel rumen membrane bioreactor (rumen MBR) to produce volatile fatty acids (VFA) from crop residues (i.e. lignocellulosic biomass). Rumen MBR can provide a sustainable route for VFA production by mimicking the digestive system of ruminant animals. Rumen fluid was inoculated in a reactor coupled with ultrafiltration (UF) membrane and fed with maize silage and concentrate feed at 60:40% (w/w). Continuous VFA production was achieved at an average daily yield of 438 mg VFA/g substrate. The most abundant VFA were acetic (40-80%) and propionic (10-40%) acids. The majority (73 ± 15%) of produced VFA was transferred through the UF membrane. Shifts in dominant rumen microbes were observed upon the transition from in vivo to in vitro environment and during reactor operation, however, stable VFA yield was maintained for 35 days, providing the first proof-of-concept of a viable rumen MBR.


Assuntos
Ácidos Graxos Voláteis , Rúmen , Animais , Reatores Biológicos , Estudos de Viabilidade , Fermentação , Silagem
13.
Sci Total Environ ; 738: 139764, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32526419

RESUMO

A proof of concept of using steel-making slag to upgrade biogas to biomethane is demonstrated in this study. Biogas is generated from the anaerobic co-digestion of sewage sludge and beverage waste. The CO2 capture capacity of an alkaline liquor derived from the release of calcium from the steel-making slag is comparable to that of the commercial adsorbent monoethanolamine. Although only 5% of Ca in the steel-making slag was released to the alkaline liquor, 1 ton of steel-making slag could be capable of upgrading 10 m3 of biogas to over 90% methane content. The results also show that pH can be used as a surrogate parameter to monitor and control biogas upgrading. Further research to improve the release of calcium is essential for the acceleration of the weathering process of steel-making slag for subsequent construction applications.


Assuntos
Esgotos , Aço , Anaerobiose , Biocombustíveis , Reatores Biológicos , Metano
14.
Chemosphere ; 239: 124722, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31494318

RESUMO

Perfluorooctanoic acid (PFOA) has attracted considerable attention worldwide due to its widespread occurrence and environmental impacts. This research focused on the photocatalytic process for the treatment of PFOA in water and wastewater. Gallium oxide (Ga2O3) and peroxymonosulfate (PMS) were mixed directly in PFOA solution, which was irradiated under different light sources. The treatment system showed excellent performance that 100% PFOA was degraded within 90 min and 60 min under 254 nm and 185 nm UV irradiation, respectively. Moreover, the degradation efficacy was unaffected by initial PFOA concentration from 50 ng L-1 to 50 mg L-1. Acidic solution (pH 3) improved the degradation process. The quantum yield in the PMS/Ga2O3 system under UV light (254 nm) was estimated to be 0.009 mol E-1. Scavengers such as tert-butanol (t-BuOH), disodium ethylenediaminetetraacetate (EDTA-Na2) and benzoquinone (BQ) were added into PFOA solution to prove that sulfate radicals (SO4•-), superoxide radical (O2•-) and photogenerated electrons (e-) were the main active species with strong redox ability for PFOA degradation in PMS/Ga2O3/UV system. Combined with the intermediates analysis, PFOA was degraded stepwise from long chain compound to shorter chain intermediates. In addition, PFOA in real wastewater exhibited similar degradation efficiency, together with 75-85% TOC removal by Ga2O3/PMS under 254 nm UV irradiation. Therefore, Ga2O3/PMS system was highly effective for PFOA photodegradation under UV irradiation, which has potential to be applied for the perfluoroalkyl substances (PFAS) treatment in water and wastewater.


Assuntos
Caprilatos/química , Fluorocarbonos/química , Gálio/química , Peróxidos/química , Poluentes Químicos da Água/química , Benzoquinonas/química , Ácido Edético/química , Concentração de Íons de Hidrogênio , Oxirredução , Fotólise , Superóxidos/química , Raios Ultravioleta , Águas Residuárias/química , Água , Purificação da Água , Difração de Raios X
15.
Sci Total Environ ; 704: 135279, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31791792

RESUMO

Recent developed sequencing techniques have resulted in a new and unprecedented way to study biological wastewater treatment, in which most organisms are uncultivable. This review provides (i) an insight on state-of-the-art sequencing techniques and their limitations; (ii) a critical assessment of the microbial community in biological reactor and biofouling layer in a membrane bioreactor (MBR). The data from high-throughput sequencing has been used to infer microbial growth conditions and metabolisms of microorganisms present in MBRs at the time of sampling. These data shed new insight to two fundamental questions about a microbial community in the MBR process namely the microbial composition (who are they?) and the functions of each specific microbial assemblage (what are their function?). The results to date also highlight the complexity of the microbial community growing on MBRs. Environmental conditions are dynamic and diverse, and can influence the diversity and structural dynamics of any given microbial community for wastewater treatment. The benefits of understanding the structure of microbial communities on three major aspects of the MBR process (i.e. nutrient removal, biofouling control, and micropollutant removal) were symmetrically delineated. This review also indicates that the deployment of microbial community analysis for a practical engineering context, in terms of process design and system optimization, can be further realized.


Assuntos
Reatores Biológicos/microbiologia , Eliminação de Resíduos Líquidos , Águas Residuárias/microbiologia , Sequência de Bases , Microbiota
16.
Chemosphere ; 218: 955-965, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30609501

RESUMO

Acid mine drainage (AMD), an acidic effluent characterized by high concentrations of sulfate and heavy metals, is an environmental and economic concern. The performance of an integrated submerged direct contact membrane distillation (DCMD) - zeolite sorption system for AMD treatment was evaluated. The results showed that modified (heat treated) zeolite achieved 26-30% higher removal of heavy metals compared to natural untreated zeolite. Heavy metal sorption by heat treated zeolite followed the order of Fe > Al > Zn > Cu > Ni and the data fitted well to Langmuir and pseudo second order kinetics model. Slight pH adjustment from 2 to 4 significantly increased Fe and Al removal rate (close to 100%) due to a combination of sorption and partial precipitation. An integrated system of submerged DCMD with zeolite for AMD treatment enabled to achieve 50% water recovery in 30 h. The integrated system provided a favourable condition for zeolite to be used in powder form with full contact time. Likewise, heavy metal removal from AMD by zeolite, specifically Fe and Al, mitigated membrane fouling on the surface of the hollow fiber submerged membrane. The integrated system produced high quality fresh water while concentrating sulfuric acid and valuable heavy metals (Cu, Zn and Ni).


Assuntos
Ácidos/química , Metais Pesados/química , Mineração/métodos , Poluentes Químicos da Água/química , Destilação , Poluentes Químicos da Água/análise
17.
Bioresour Technol ; 281: 226-233, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30825825

RESUMO

This study investigated the impact of mixing on key factors including foaming, substrate stratification, methane production and microbial community in three full scale anaerobic digesters. Digester foaming was observed at one plant that co-digested sewage sludge and food waste, and was operated without mixing. The lack of mixing led to uneven distribution of total chemical oxygen demand (tCOD) and volatile solid (VS) as well as methane production within the digester. 16S rRNA gene-based community analysis clearly differentiated the microbial community from the top and bottom. By contrast, foaming and substrate stratification were not observed at the other two plants with internal circulation mixing. The abundance of methanogens (Methanomicrobia) at the top was about four times higher than at the bottom, correlating to much higher methane production from the top verified by ex-situ biomethane assay, causing foaming. This result is consistent with foaming potential assessment of digestate samples from the digester.


Assuntos
Metano/biossíntese , Microbiota , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , RNA Ribossômico 16S/genética , Esgotos
18.
Water Res ; 150: 47-55, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30503874

RESUMO

Due to high phosphorus (P) and nitrogen (N) content, human urine has often proven to suitable raw material for fertiliser production. However, most of the urine diverting toilets or male urinals dilute the urine 2 to 10 times. This decreases the efficiency in the precipitation of P and stripping of N. In this work, a commercial fertiliser blend was used as forward osmosis (FO) draw solution (DS) to concentrate real diluted urine. During the concentration, the urea in the urine is recovered as it diffuses to the fertiliser. Additionally, the combination of concentrate PO43-, reverse Mg2+ flux from the DS and the Mg2+ presents in the flushing water, was able to recover the PO43- as struvite. With 50% concentrated urine, 93% P recovery was achieved without the addition of an external Mg2+. Concurrently, 50% of the N was recovered in the diluted fertiliser DS. An economic analysis was performed to understand the feasibility of this process. It was found that the revenue from the produced fertilisers could potentially offset the operational and capital costs of the system. Additionally, if the reduction in the downstream nutrients load is accounted for, the total revenue of the process would be over 5.3 times of the associated costs.


Assuntos
Fósforo , Purificação da Água , Estudos de Viabilidade , Humanos , Masculino , Nitrogênio , Osmose , Água
19.
Chemosphere ; 233: 245-251, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31176125

RESUMO

Assessing urban stormwater quality by investigation and characterisation of pollutants is a prerequisite for its effective management, for reuse and safe discharge. The stochastic nature of rainfall, dry weather periods, topology, human activities and climatic conditions generate and wash-off pollutants differently from event to event. This study investigated the major physico-chemical pollutants in stormwater runoff collected from an urban catchment over a period of two years. The aim of this study was to explore the use of UV spectroscopy to identify the first flush. In this study, the variation of pollutants during the passage of a rain event and the relationships among the measured pollutants was analysed to help broaden the application of UV spectroscopy beyond the detection of organic matter. Correlation analysis and principal component analysis (PCA) were performed to identify the possible relationship among measured pollutants. Although correlation analysis revealed some relationships between pollutants, in general they were not strong enough and was not helpful. PCA biplots suggested a few groups and revealed that the two components model could explain nearly 72% of the variability between pollutants. Pollutants in the group that included dissolved organic carbon (DOC) behaved in a similar manner. UV spectroscopy was applied to identify the first flush by comparing the recorded spectrum of consecutive samples that were collected in an event. Analysis of the spectra was able to isolate the point when first flush ends for DOC and pollutants that behave similar to it.


Assuntos
Espectrofotometria Ultravioleta/métodos , Poluentes Químicos da Água/análise , Austrália , Carbono/análise , Cidades , Monitoramento Ambiental/métodos , Chuva , Tempo (Meteorologia)
20.
Chemosphere ; 226: 431-438, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30951937

RESUMO

Arsenic (As) contamination of drinking water is a major cause of As toxicity in many parts of the world. A study was conducted to evaluate As removal from water containing 100-700 µg/L of As and As to Fe concentration ratios of 1:5-1:1000 using the coprecipitation process with and without As/Fe adsorption onto granular activated carbon (GAC). Fe concentration required to reduce As concentrations in order to achieve the WHO standard level of 10 µg/L increased exponentially with the increase in initial As concentration. When small amounts of GAC were added to the As/Fe solutions the Fe required to remove these As concentrations reduced drastically. This decline was due to the GAC adsorption of Fe and As, enhancing the removal of these metals through coprecipitation. Predictive regression equations were developed relating the GAC dose requirement to the initial As and Fe concentrations. Zeta potential data revealed that As was adsorbed on the GAC by outer-sphere complexation whereas Fe was adsorbed by inner-sphere complexation reversing the negative charge on GAC to positive values. X-ray diffraction of the GAC samples in the presence of Fe had an additional peak characteristic of ferrihydrite (Fe oxide) compared to that of the GAC sample without Fe. The study showed that incorporating an adsorbent into the coprecipitation process has the advantage of removing As from waters at all concentrations of Fe and As compared to coprecipitation alone which does not remove As to the required levels if Fe concentration is low.


Assuntos
Arsênio/efeitos adversos , Ferro/uso terapêutico , Poluentes Químicos da Água/química , Adsorção , Ferro/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA