Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 330
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(2): e2316540120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38170751

RESUMO

How the microaerobic pathogen Campylobacter jejuni establishes its niche and expands in the gut lumen during infection is poorly understood. Using 6-wk-old ferrets as a natural disease model, we examined this aspect of C. jejuni pathogenicity. Unlike mice, which require significant genetic or physiological manipulation to become colonized with C. jejuni, ferrets are readily infected without the need to disarm the immune system or alter the gut microbiota. Disease after C. jejuni infection in ferrets reflects closely how human C. jejuni infection proceeds. Rapid growth of C. jejuni and associated intestinal inflammation was observed within 2 to 3 d of infection. We observed pathophysiological changes that were noted by cryptic hyperplasia through the induction of tissue repair systems, accumulation of undifferentiated amplifying cells on the colon surface, and instability of HIF-1α in colonocytes, which indicated increased epithelial oxygenation. Metabolomic analysis demonstrated that lactate levels in colon content were elevated in infected animals. A C. jejuni mutant lacking lctP, which encodes an L-lactate transporter, was significantly decreased for colonization during infection. Lactate also influences adhesion and invasion by C. jejuni to a colon carcinoma cell line (HCT116). The oxygenation required for expression of lactate transporter (lctP) led to identification of a putative thiol-based redox switch regulator (LctR) that may repress lctP transcription under anaerobic conditions. Our work provides better insights into the pathogenicity of C. jejuni.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Animais , Humanos , Camundongos , Ácido Láctico/metabolismo , Campylobacter jejuni/genética , Furões , Transportadores de Ácidos Monocarboxílicos
2.
Nature ; 585(7823): E4, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32814908

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Nature ; 583(7817): 542-547, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32699399

RESUMO

Thermosets-polymeric materials that adopt a permanent shape upon curing-have a key role in the modern plastics and rubber industries, comprising about 20 per cent of polymeric materials manufactured today, with a worldwide annual production of about 65 million tons1,2. The high density of crosslinks that gives thermosets their useful properties (for example, chemical and thermal resistance and tensile strength) comes at the expense of degradability and recyclability. Here, using the industrial thermoset polydicyclopentadiene as a model system, we show that when a small number of cleavable bonds are selectively installed within the strands of thermosets using a comonomer additive in otherwise traditional curing workflows, the resulting materials can display the same mechanical properties as the native material, but they can undergo triggered, mild degradation to yield soluble, recyclable products of controlled size and functionality. By contrast, installation of cleavable crosslinks, even at much higher loadings, does not produce degradable materials. These findings reveal that optimization of the cleavable bond location can be used as a design principle to achieve controlled thermoset degradation. Moreover, we introduce a class of recyclable thermosets poised for rapid deployment.

4.
J Am Chem Soc ; 146(25): 17066-17074, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38865160

RESUMO

The rapid decline in DNA sequencing costs has fueled the demand for nucleic acid collection to unravel genomic information, develop treatments for genetic diseases, and track emerging biological threats. Current approaches to maintaining these nucleic acid collections hinge on continuous electricity for maintaining low-temperature and intricate cold-chain logistics. Inspired by the millennia-long preservation of fossilized biological specimens in calcified minerals or glassy amber, we present Thermoset-REinforced Xeropreservation (T-REX): a method for storing DNA in deconstructable glassy polymer networks. Key to T-REX is the development of polyplexes for nucleic acid encapsulation, streamlining the transfer of DNA from aqueous to organic phases, replete with initiators, monomers, cross-linkers, and thionolactone-based cleavable comonomers required to form the polymer networks. This process successfully encapsulates DNA that spans different length scales, from tens of bases to gigabases, in a matter of hours compared to days with traditional silica-based encapsulation. Further, T-REX permits the extraction of DNA using comparatively benign reagents, unlike the hazardous hydrofluoric acid required for recovery from silica. T-REX provides a path toward low-cost, time-efficient, and long-term nucleic acid preservation for synthetic biology, genomics, and digital information storage, potentially overcoming traditional low-temperature storage challenges.


Assuntos
DNA , Polímeros , Polímeros/química , DNA/química , Vidro/química
5.
J Am Chem Soc ; 146(13): 9142-9154, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526229

RESUMO

The development of cleavable comonomers (CCs) with suitable copolymerization reactivity paves the way for the introduction of backbone deconstructability into polymers. Recent advancements in thionolactone-based CCs, exemplified by dibenzo[c,e]-oxepine-5(7H)-thione (DOT), have opened promising avenues for the selective deconstruction of multiple classes of vinyl polymers, including polyacrylates, polyacrylamides, and polystyrenics. To date, however, no thionolactone CC has been shown to copolymerize with methacrylates to an appreciable extent to enable polymer deconstruction. Here, we overcome this challenge through the design of a new class of benzyl-functionalized thionolactones (bDOTs). Guided by detailed mechanistic analyses, we find that the introduction of radical-stabilizing substituents to bDOTs enables markedly increased and tunable copolymerization reactivity with methyl methacrylate (MMA). Through iterative optimizations of the molecular structure, a specific bDOT, F-p-CF3PhDOT, is discovered to copolymerize efficiently with MMA. High molar mass deconstructable PMMA-based copolymers (dPMMA, Mn > 120 kDa) with low percentages of F-p-CF3PhDOT (1.8 and 3.8 mol%) are prepared using industrially relevant bulk free radical copolymerization conditions. The thermomechanical properties of dPMMA are similar to PMMA; however, the former is shown to degrade into low molar mass fragments (<6.5 kDa) under mild aminolysis conditions. This work presents the first example of a radical ring-opening CC capable of nearly random copolymerization with MMA without the possibility of cross-linking and provides a workflow for the mechanism-guided design of deconstructable copolymers in the future.

6.
J Am Chem Soc ; 146(14): 10115-10123, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38554100

RESUMO

Hydrogen fluoride (HF) is a versatile reagent for material transformation, with applications in self-immolative polymers, remodeled siloxanes, and degradable polymers. The responsive in situ generation of HF in materials therefore holds promise for new classes of adaptive material systems. Here, we report the mechanochemically coupled generation of HF from alkoxy-gem-difluorocyclopropane (gDFC) mechanophores derived from the addition of difluorocarbene to enol ethers. Production of HF involves an initial mechanochemically assisted rearrangement of gDFC mechanophore to α-fluoro allyl ether whose regiochemistry involves preferential migration of fluoride to the alkoxy-substituted carbon, and ab initio steered molecular dynamics simulations reproduce the observed selectivity and offer insights into the mechanism. When the alkoxy gDFC mechanophore is derived from poly(dihydrofuran), the α-fluoro allyl ether undergoes subsequent hydrolysis to generate 1 equiv of HF and cleave the polymer chain. The hydrolysis is accelerated via acid catalysis, leading to self-amplifying HF generation and concomitant polymer degradation. The mechanically generated HF can be used in combination with fluoride indicators to generate an optical response and to degrade polybutadiene with embedded HF-cleavable silyl ethers (11 mol %). The alkoxy-gDFC mechanophore thus provides a mechanically coupled mechanism of releasing HF for polymer remodeling pathways that complements previous thermally driven mechanisms.

7.
Environ Sci Technol ; 58(4): 1882-1893, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38214663

RESUMO

The expansion of renewable energy and the large-scale deployment of carbon dioxide (CO2) capture and storage (CCS) can decarbonize the power sector. The use of CO2 to extract geothermal heat from naturally porous and permeable sedimentary basins to generate electricity (CO2-plume geothermal (CPG) system) presents an opportunity to simultaneously generate renewable energy and geologically store CO2. In this study, we estimate the life cycle greenhouse gas (GHG) impacts of CPG systems through 12 scenarios in which CPG systems are combined with one of six CO2 sources (e.g., bioenergy with carbon capture and storage (BECCS) and iron and steel facilities) and operate in two geological settings. We find the life cycle GHG emissions of CPG systems ranging from -0.25 to -6.18 kg CO2eq/kWh. CPG systems can achieve the highest emissions reductions when utilizing the CO2 captured from BECCS. We evaluate uncertainty through a Monte Carlo simulation, demonstrating consistent net reductions in life cycle emissions and a local, one-parameter-at-a-time sensitivity analysis that identifies the CO2 capture capacity as the high-impact parameter of the results. Through the production of electricity, CPG systems can provide additional environmental benefits to the deployment of large-scale CCS.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Dióxido de Carbono/análise , Energia Renovável , Efeito Estufa
8.
Nature ; 563(7729): E17, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30127407

RESUMO

The green arrow in Fig. 3 has been restored online.

9.
Nature ; 560(7716): 65-69, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30022167

RESUMO

Polymer networks can have a range of desirable properties such as mechanical strength, wide compositional diversity between different materials, permanent porosity, convenient processability and broad solvent compatibility1,2. Designing polymer networks from the bottom up with new structural motifs and chemical compositions can be used to impart dynamic features such as malleability or self-healing, or to allow the material to respond to environmental stimuli3-8. However, many existing systems exhibit only one operational state that is defined by the material's composition and topology3-6; or their responsiveness may be irreversible7,9,10 and limited to a single network property11,12 (such as stiffness). Here we use cooperative self-assembly as a design principle to prepare a material that can be switched between two topological states. By using networks of polymer-linked metal-organic cages in which the cages change shape and size on irradiation, we can reversibly switch the network topology with ultraviolet or green light. This photoswitching produces coherent changes in several network properties at once, including branch functionality, junction fluctuations, defect tolerance, shear modulus, stress-relaxation behaviour and self-healing. Topology-switching materials could prove useful in fields such as soft robotics and photo-actuators as well as providing model systems for fundamental polymer physics studies.

10.
Nano Lett ; 23(1): 177-182, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36548278

RESUMO

Diblock Janus-type "A-branch-B" bottlebrush copolymers (di-JBBCPs) consist of a backbone with alternating A and B side chains, in contrast to the side chain arrangement of conventional bottlebrush copolymers. As a result, A and B blocks of di-JBBCPs can microphase-separate perpendicular to the backbone, which is located at the interface between the two blocks. A reparametrized dissipative particle dynamics (DPD) model is used to theoretically investigate the self-assembly of di-JBBCPs and to compare with the experimental results of a range of polystyrene-branch-polydimethylsiloxane di-JBBCPs. The experimentally formed cylinder, gyroid, and lamellar morphologies showed good correspondence with the model phase diagram, and the effect of changing volume fraction and backbone length is revealed. The DPD model predicts a bulk-stable perforated lamella morphology together with two unconventional spherical phases, the Frank-Kasper A15 spheres and the hexagonally close-packed spheres, indicating the diversity of morphologies available from complex BCP molecular architectures.

11.
J Am Chem Soc ; 145(29): 16200-16209, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37459594

RESUMO

Solid polymer electrolytes have the potential to enable safer and more energy-dense batteries; however, a deeper understanding of their ion conduction mechanisms, and how they can be optimized by molecular design, is needed to realize this goal. Here, we investigate the impact of anion dissociation energy on ion conduction in solid polymer electrolytes via a novel class of ionenes prepared using acyclic diene metathesis (ADMET) polymerization of highly dissociative, liquid crystalline fluorinated aryl sulfonimide-tagged ("FAST") anion monomers. These ionenes with various cations (Li+, Na+, K+, and Cs+) form well-ordered lamellae that are thermally stable up to 180 °C and feature domain spacings that correlate with cation size, providing channels lined with dissociative FAST anions. Electrochemical impedance spectroscopy (EIS) and differential scanning calorimetry (DSC) experiments, along with nudged elastic band (NEB) calculations, suggest that cation motion in these materials operates via an ion-hopping mechanism. The activation energy for Li+ conduction is 59 kJ/mol, which is among the lowest for systems that are proposed to operate via an ion conduction mechanism that is decoupled from polymer segmental motion. Moreover, the addition of a cation-coordinating solvent to these materials led to a >1000-fold increase in ionic conductivity without detectable disruption of the lamellar structure, suggesting selective solvation of the lamellar ion channels. This work demonstrates that molecular design can facilitate controlled formation of dissociative anionic channels that translate to significant enhancements in ion conduction in solid polymer electrolytes.

12.
J Am Chem Soc ; 145(40): 21879-21885, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37774389

RESUMO

Metal-organic cages/polyhedra (MOCs) are versatile building blocks for advanced polymer networks with properties that synergistically blend those of traditional polymers and crystalline frameworks. Nevertheless, constructing polyMOCs from very stable Pt(II)-based MOCs or mixtures of metal ions such as Pd(II) and Pt(II) has not, to our knowledge, been demonstrated, nor has exploration of how the dynamics of metal-ligand exchange at the MOC level may impact bulk polyMOC energy dissipation. Here, we introduce a new class of polymer metal-organic cage (polyMOC) gels featuring polyethylene glycol (PEG) strands of varied length cross-linked through bis-pyridyl-carbazole-based M6L12 cubes, where M is Pd(II), Pt(II), or mixtures thereof. We show that, while polyMOCs with varied Pd(II) content have similar network structures, their average stress-relaxation rates are tunable over 3 orders of magnitude due to differences in Pd(II)- and Pt(II)-ligand exchange rates at the M6L12 junction level. Moreover, mixed-metal polyMOCs display relaxation times indicative of intrajunction cooperative interactions, which stands in contrast to previous materials based on point metal junctions. Altogether, this work (1) introduces a novel MOC architecture for polyMOC design, (2) shows that polyMOCs can be prepared from mixtures of Pd(II)/Pt(II), and (3) demonstrates that polyMOCs display unique relaxation behavior due to their multivalent junctions, offering a strategy for controlling polyMOC properties independently of their polymer components.

13.
J Am Chem Soc ; 145(3): 1916-1923, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36637230

RESUMO

Convenient strategies for the deconstruction and reprocessing of thermosets could improve the circularity of these materials, but most approaches developed to date do not involve established, high-performance engineering materials. Here, we show that bifunctional silyl ether, i.e., R'O-SiR2-OR'', (BSE)-based comonomers generate covalent adaptable network analogues of the industrial thermoset polydicyclopentadiene (pDCPD) through a novel BSE exchange process facilitated by the low-cost food-safe catalyst octanoic acid. Experimental studies and density functional theory calculations suggest an exchange mechanism involving silyl ester intermediates with formation rates that strongly depend on the Si-R2 substituents. As a result, pDCPD thermosets manufactured with BSE comonomers display temperature- and time-dependent stress relaxation as a function of their substituents. Moreover, bulk remolding of pDCPD thermosets is enabled for the first time. Altogether, this work presents a new approach toward the installation of exchangeable bonds into commercial thermosets and establishes acid-catalyzed BSE exchange as a versatile addition to the toolbox of dynamic covalent chemistry.

14.
J Am Chem Soc ; 145(18): 10187-10196, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37017452

RESUMO

The cis- and trans-isomers of a silacycloheptene were selectively synthesized by the alkylation of a silyl dianion, a novel approach to strained cycloalkenes. The trans-silacycloheptene (trans-SiCH) was significantly more strained than the cis isomer, as predicted by quantum chemical calculations and confirmed by crystallographic signatures of a twisted alkene. Each isomer exhibited distinct reactivity toward ring-opening metathesis polymerization (ROMP), where only trans-SiCH afforded high-molar-mass polymer under enthalpy-driven ROMP. Hypothesizing that the introduction of silicon might result in increased molecular compliance at large extensions, we compared poly(trans-SiCH) to organic polymers by single-molecule force spectroscopy (SMFS). Force-extension curves from SMFS showed that poly(trans-SiCH) is more easily overstretched than two carbon-based analogues, polycyclooctene and polybutadiene, with stretching constants that agree well with the results of computational simulations.

15.
Nat Mater ; 21(12): 1434-1440, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36357688

RESUMO

The inability to synthesize hierarchical structures with independently tailored nanoscale and mesoscale features limits the discovery of next-generation multifunctional materials. Here we present a predictable molecular self-assembly strategy to craft nanostructured materials with a variety of phase-in-phase hierarchical morphologies. The compositionally anisotropic building blocks employed in the assembly process are formed by multicomponent graft block copolymers containing sequence-defined side chains. The judicious design of various structural parameters in the graft block copolymers enables broadly tunable compositions, morphologies and lattice parameters across the nanoscale and mesoscale in the assembled structures. Our strategy introduces advanced design principles for the efficient creation of complex hierarchical structures and provides a facile synthetic platform to access nanomaterials with multiple precisely integrated functionalities.


Assuntos
Nanoestruturas , Nanoestruturas/química , Polímeros/química
16.
J Org Chem ; 88(23): 16644-16648, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37948744

RESUMO

A simple, scalable synthetic methodology for the synthesis of N,N-dimethyltrifluoromethanesulfonamide (DMTMSA) and other trifluoromethanesulfonamide solvents is described. No specialized glassware is required, water is the solvent, and an ice bath is used for cooling. Up to 155 g of DMTMSA is synthesized in a single batch in 92% yield. The optimized process is highly mass efficient (PMI = 9.1), and excess dimethylamine may be recovered (93% recovery, 51% decrease in waste) and recycled via a simple short-path distillation.

17.
Chem Rev ; 121(12): 7059-7121, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-33823111

RESUMO

In the two decades since the introduction of the "click chemistry" concept, the toolbox of "click reactions" has continually expanded, enabling chemists, materials scientists, and biologists to rapidly and selectively build complexity for their applications of interest. Similarly, selective and efficient covalent bond breaking reactions have provided and will continue to provide transformative advances. Here, we review key examples and applications of efficient, selective covalent bond cleavage reactions, which we refer to herein as "clip reactions." The strategic application of clip reactions offers opportunities to tailor the compositions and structures of complex (bio)(macro)molecular systems with exquisite control. Working in concert, click chemistry and clip chemistry offer scientists and engineers powerful methods to address next-generation challenges across the chemical sciences.


Assuntos
Técnicas de Química Sintética/métodos , Substâncias Macromoleculares/química , Química Click/métodos , Substâncias Macromoleculares/síntese química
18.
Chem Rev ; 121(8): 5042-5092, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33792299

RESUMO

Polymer networks are complex systems consisting of molecular components. Whereas the properties of the individual components are typically well understood by most chemists, translating that chemical insight into polymer networks themselves is limited by the statistical and poorly defined nature of network structures. As a result, it is challenging, if not currently impossible, to extrapolate from the molecular behavior of components to the full range of performance and properties of the entire polymer network. Polymer networks therefore present an unrealized, important, and interdisciplinary opportunity to exert molecular-level, chemical control on material macroscopic properties. A barrier to sophisticated molecular approaches to polymer networks is that the techniques for characterizing the molecular structure of networks are often unfamiliar to many scientists. Here, we present a critical overview of the current characterization techniques available to understand the relation between the molecular properties and the resulting performance and behavior of polymer networks, in the absence of added fillers. We highlight the methods available to characterize the chemistry and molecular-level properties of individual polymer strands and junctions, the gelation process by which strands form networks, the structure of the resulting network, and the dynamics and mechanics of the final material. The purpose is not to serve as a detailed manual for conducting these measurements but rather to unify the underlying principles, point out remaining challenges, and provide a concise overview by which chemists can plan characterization strategies that suit their research objectives. Because polymer networks cannot often be sufficiently characterized with a single method, strategic combinations of multiple techniques are typically required for their molecular characterization.

19.
Environ Sci Technol ; 57(38): 14173-14181, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37698586

RESUMO

India seeks to deploy millions of solar water pumps to farmers who often lack access to electricity or face an unreliable power supply. Improving the use of this technology can bolster sustainable agriculture and expand clean energy services. We investigate farm-level impacts and opportunities with primary survey data (n = 292 farmers) and a large real-time pump operational data set (n = 1106 pumps). By modeling the potential solar generation of off-grid solar water pumps, we estimate 300-400 kWh/month of unutilized solar energy per pumping system, representing up to 95% of potential generation. While farmers report increased revenues and ease of pump operation, unsolved challenges concerning the lack of panel cleaning and tracking remain. Pump operational data show pump usage in the summer and monsoon seasons and an expansion of irrigation to grow crops in the winter. Relative to emissions associated with the use of diesel pumps, solar pumps that are highly utilized reduced life cycle CO2-eq emissions by 93% on average, while the pumping systems with the lowest use result in a net increase of 26% relative to the diesel alternatives. Based on observed usage rates, approximately 70% of pumps had positive environmental benefits. The high share of unutilized solar energy provides a significant opportunity to use the energy for nonpumping purposes.


Assuntos
Energia Solar , Água , Agricultura , Tecnologia , Produtos Agrícolas
20.
Environ Sci Technol ; 57(7): 2898-2906, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36758223

RESUMO

China's power system is highly regulated and uses an "equal-share" dispatch approach. However, market mechanisms are being introduced to reduce generation costs and improve system reliability. Here, we quantify the climate and human health impacts brought about by this transition, modeling China's power system operations under economic dispatch. We find that significant reductions in mortality related to air pollution (11%) and CO2 emissions (3%) from the power sector can be attained by economic dispatch, relative to the equal-share approach, through more efficient coal-powered generation. Additional health and climate benefits can be achieved by incorporating emission externalities in electricity generation costs. However, the benefits of the transition to economic dispatch will be unevenly distributed across China and may lead to increased health damage in some regions. Our results show the potential of dispatch decision-making in electricity generation to mitigate the negative impacts of power plant emissions with existing facilities in China.


Assuntos
Poluição do Ar , Humanos , Reprodutibilidade dos Testes , Poluição do Ar/análise , Clima , Carvão Mineral , Centrais Elétricas , China , Dióxido de Carbono/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA