Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cell ; 184(8): 2167-2182.e22, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33811809

RESUMO

Cardiac injury and dysfunction occur in COVID-19 patients and increase the risk of mortality. Causes are ill defined but could be through direct cardiac infection and/or inflammation-induced dysfunction. To identify mechanisms and cardio-protective drugs, we use a state-of-the-art pipeline combining human cardiac organoids with phosphoproteomics and single nuclei RNA sequencing. We identify an inflammatory "cytokine-storm", a cocktail of interferon gamma, interleukin 1ß, and poly(I:C), induced diastolic dysfunction. Bromodomain-containing protein 4 is activated along with a viral response that is consistent in both human cardiac organoids (hCOs) and hearts of SARS-CoV-2-infected K18-hACE2 mice. Bromodomain and extraterminal family inhibitors (BETi) recover dysfunction in hCOs and completely prevent cardiac dysfunction and death in a mouse cytokine-storm model. Additionally, BETi decreases transcription of genes in the viral response, decreases ACE2 expression, and reduces SARS-CoV-2 infection of cardiomyocytes. Together, BETi, including the Food and Drug Administration (FDA) breakthrough designated drug, apabetalone, are promising candidates to prevent COVID-19 mediated cardiac damage.


Assuntos
COVID-19/complicações , Cardiotônicos/uso terapêutico , Proteínas de Ciclo Celular/antagonistas & inibidores , Cardiopatias/tratamento farmacológico , Quinazolinonas/uso terapêutico , Fatores de Transcrição/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Citocinas/metabolismo , Feminino , Cardiopatias/etiologia , Células-Tronco Embrionárias Humanas , Humanos , Inflamação/complicações , Inflamação/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição/metabolismo , Tratamento Farmacológico da COVID-19
2.
Blood ; 139(9): 1389-1408, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34570880

RESUMO

Graft-versus-host disease (GVHD) remains the leading cause of nonrelapse mortality after allogeneic stem cell transplantation for hematological malignancies. Manifestations of GVHD in the central nervous system (CNS) present as neurocognitive dysfunction in up to 60% of patients; however, the mechanisms driving chronic GVHD (cGVHD) in the CNS are yet to be elucidated. Our studies of murine cGVHD revealed behavioral deficits associated with broad neuroinflammation and persistent Ifng upregulation. By flow cytometry, we observed a proportional shift in the donor-derived T-cell population in the cGVHD brain from early CD8 dominance to later CD4 sequestration. RNA sequencing of the hippocampus identified perturbations to structural and functional synapse-related gene expression, together with the upregulation of genes associated with interferon-γ responses and antigen presentation. Neuroinflammation in the cortex of mice and humans during acute GVHD was recently shown to be mediated by resident microglia-derived tumor necrosis factor. In contrast, infiltration of proinflammatory major histocompatibility complex (MHC) class II+ donor bone marrow (BM)-derived macrophages (BMDMs) was identified as a distinguishing feature of CNS cGVHD. Donor BMDMs, which composed up to 50% of the CNS myeloid population, exhibited a transcriptional signature distinct from resident microglia. Recipients of MHC class II knockout BM grafts exhibited attenuated neuroinflammation and behavior comparable to controls, suggestive of a critical role of donor BMDM MHC class II expression in CNS cGVHD. Our identification of disease mediators distinct from those in the acute phase indicates the necessity to pursue alternative therapeutic targets for late-stage neurological manifestations.


Assuntos
Transplante de Medula Óssea , Doença Enxerto-Hospedeiro/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Macrófagos/imunologia , Doenças Neuroinflamatórias/imunologia , Animais , Doença Crônica , Feminino , Camundongos
3.
Blood ; 139(6): 889-893, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34662378

RESUMO

Classical Hodgkin lymphoma (cHL) is a common malignancy in children and adolescents. Although cHL is highly curable, treatment with chemotherapy and radiation often come at the cost of long-term toxicity and morbidity. Effective risk-stratification tools are needed to tailor therapy. Here, we used gene expression profiling (GEP) to investigate tumor microenvironment (TME) biology, to determine molecular correlates of treatment failure, and to develop an outcome model prognostic for pediatric cHL. A total of 246 formalin-fixed, paraffin-embedded tissue biopsies from patients enrolled in the Children's Oncology Group trial AHOD0031 were used for GEP and compared with adult cHL data. Eosinophil, B-cell, and mast cell signatures were enriched in children, whereas macrophage and stromal signatures were more prominent in adults. Concordantly, a previously published model for overall survival prediction in adult cHL did not validate in pediatric cHL. Therefore, we developed a 9-cellular component model reflecting TME composition to predict event-free survival (EFS). In an independent validation cohort, we observed a significant difference in weighted 5-year EFS between high-risk and low-risk groups (75.2% vs 90.3%; log-rank P = .0138) independent of interim response, stage, fever, and albumin. We demonstrate unique disease biology in children and adolescents that can be harnessed for risk-stratification at diagnosis. This trial was registered at www.clinicaltrials.gov as #NCT00025259.


Assuntos
Perfilação da Expressão Gênica , Doença de Hodgkin/genética , Criança , Regulação Neoplásica da Expressão Gênica , Doença de Hodgkin/diagnóstico , Humanos , Modelos Biológicos , Prognóstico , Intervalo Livre de Progressão , Microambiente Tumoral
4.
Haematologica ; 109(7): 2131-2143, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38268493

RESUMO

T-cell-engaging bispecific antibody (T-BsAb, also known as BiTE) therapy has emerged as a powerful therapeutic modality against multiple myeloma. Given that T-BsAb therapy redirects endogenous T cells to eliminate tumor cells, reinvigorating dysfunctional T cells may be a potential approach to improve the efficacy of T-BsAb. While various immunostimulatory cytokines can potentiate effector T-cell functions, the optimal cytokine treatment for T-BsAb therapy is yet to be established, partly due to a concern of cytokine release syndrome driven by aberrant interferon (IFN)-γ production. Here, we functionally screen immunostimulatory cytokines to determine an ideal combination partner for T-BsAb therapy. This approach reveals interleukin (IL)-21 as a potential immunostimulatory cytokine with the ability to augment T-BsAb-mediated release of granzyme B and perforin, without increasing IFN-γ release. Transcriptome profiling and functional characterization strongly support that IL-21 selectively targets the cytotoxic granule exocytosis pathway, but not pro-inflammatory responses. Notably, IL-21 modulates multiple steps of cytotoxic effector functions including upregulation of co-activating CD226 receptor, increasing cytotoxic granules, and promoting cytotoxic granule delivery at the immunological synapse. Indeed, T-BsAb-mediated myeloma killing is cytotoxic granule-dependent, and IL-21 priming significantly augments cytotoxic activities. Furthermore, in vivo IL-21 treatment induces cytotoxic effector reprogramming in bone marrow T cells, showing synergistic anti-myeloma effects in combination with T-BsAb therapy. Together, harnessing the cytotoxic granule exocytosis pathway by IL-21 may be a potential approach to achieve better responses by T-BsAb therapy.


Assuntos
Anticorpos Biespecíficos , Exocitose , Mieloma Múltiplo , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Humanos , Camundongos , Animais , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/terapia , Mieloma Múltiplo/patologia , Citotoxicidade Imunológica , Interleucinas/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Granzimas/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/efeitos dos fármacos
5.
Clin Gastroenterol Hepatol ; 21(11): 2825-2833, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36280101

RESUMO

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease, for which it is crucial to promptly detect actionable and prognostic alterations to drive specific therapeutic decisions, regardless of tumor resectability status. Endoscopic ultrasonography-guided fine-needle aspiration (EUS-FNA) is of key importance for PDAC diagnosis and can contribute significantly to tumor molecular profiling. METHODS: Comprehensive genomic profile by targeted next-generation sequencing (NGS) was performed on 2 independent PDAC patient cohorts. Cohort 1 consisted of 77 patients with resectable PDAC for whom the histologic sample at the time of resection was available; for 56 patients cytologic specimens at the time of diagnosis also were obtained by EUS-FNA. Cohort 2 consisted of 20 patients with unresectable PDAC, for whom only the EUS-FNA cytologic sample was available. RESULTS: In cohort 1, a complete concordant mutational profile between the cytologic sample at diagnosis and the corresponding histologic specimen after surgery was observed in 88% of the cases, proving the ability to detect potential clinically relevant alterations in cytologic samples by NGS analysis. Notably, clinically actionable mutations were identified in 20% of patients. In cohort 2, comprehensive mutational profiling was obtained successfully for all samples. Consistent with the findings of cohort 1, KRAS, TP53, CDKN2A, and SMAD4 were the most altered genes. Most importantly, 15% of the patients harbored actionable mutations. CONCLUSIONS: Our findings show the feasibility of an NGS approach using both surgical specimens and cytologic samples. The model proposed in this study can be included successfully in the clinical setting for comprehensive molecular profiling of all PDAC patients irrespective of their surgical eligibility.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/cirurgia , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Adenocarcinoma/cirurgia , Aspiração por Agulha Fina Guiada por Ultrassom Endoscópico , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/cirurgia , Neoplasias Pancreáticas
6.
Curr Genomics ; 24(3): 155-170, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38178986

RESUMO

Background: Recent studies on CRISPR/Cas9-mediated gene editing in Schistosoma mansoni have shed new light on the study and control of this parasitic helminth. However, the gene editing efficiency in this parasite is modest. Methods: To improve the efficiency of CRISPR/Cas9 genome editing in schistosomes, we used lentivirus, which has been effectively used for gene editing in mammalian cells, to deliver plasmid DNA encoding Cas9 nuclease, a sgRNA targeting acetylcholinesterase (SmAChE) and a mCherry fluorescence marker into schistosomes. Results: MCherry fluorescence was observed in transduced eggs, schistosomula, and adult worms, indicating that the CRISPR components had been delivered into these parasite stages by lentivirus. In addition, clearly changed phenotypes were observed in SmAChE-edited parasites, including decreased SmAChE activity, reduced hatching ability of edited eggs, and altered behavior of miracidia hatched from edited eggs. Next-generation sequencing analysis demonstrated that the lentiviral transduction-based CRISPR/Cas9 gene modifications in SmAChE-edited schistosomes were homology-directed repair predominant but with much lower efficiency than that obtained using electroporation (data previously published by our laboratory) for the delivery of CRISPR components. Conclusion: Taken together, electroporation is more efficient than lentiviral transduction in the delivery of CRISPR/Cas9 into schistosomes for programmed genome editing. The exploration of tactics for enhancing CRISPR/Cas9 gene editing provides the basis for the future improvement of programmed genome editing in S. mansoni.

7.
FASEB J ; 35(1): e21205, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33337558

RESUMO

CRISPR/Cas9-mediated genome editing shows cogent potential for the genetic modification of helminth parasites. We report successful gene knock-in (KI) into the genome of the egg of Schistosoma mansoni by combining CRISPR/Cas9 with single-stranded oligodeoxynucleotides (ssODNs). We edited the acetylcholinesterase (AChE) gene of S. mansoni targeting two guide RNAs (gRNAs), X5 and X7, located on exon 5 and exon 7 of Smp_154600, respectively. Eggs recovered from livers of experimentally infected mice were transfected by electroporation with a CRISPR/Cas9-vector encoding gRNA X5 or X7 combining with/ without a ssODN donor. Next generation sequencing analysis of reads of amplicon libraries spanning targeted regions revealed that the major modifications induced by CRISPR/Cas9 in the eggs were generated by homology directed repair (HDR). Furthermore, soluble egg antigen from AChE-edited eggs exhibited markedly reduced AChE activity, indicative that programed Cas9 cleavage mutated the AChE gene. Following injection of AChE-edited schistosome eggs into the tail veins of mice, an significantly enhanced Th2 response involving IL-4, -5, -10, and-13 was detected in lung cells and splenocytes in mice injected with X5-KI eggs in comparison to control mice injected with unmutated eggs. A Th2-predominant response, with increased levels of IL-4, -13, and GATA3, also was induced by X5 KI eggs in small intestine-draining mesenteric lymph node cells when the gene-edited eggs were introduced into the subserosa of the ileum of the mice. These findings confirmed the potential and the utility of CRISPR/Cas9-mediated genome editing for functional genomics in schistosomes.


Assuntos
Acetilcolinesterase/metabolismo , Sistemas CRISPR-Cas , Edição de Genes , Proteínas de Helminto/metabolismo , Schistosoma mansoni/enzimologia , Esquistossomose mansoni/metabolismo , Acetilcolinesterase/genética , Animais , Feminino , Proteínas de Helminto/genética , Camundongos , Schistosoma mansoni/genética , Esquistossomose mansoni/genética
8.
Breast Cancer Res Treat ; 170(1): 179-188, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29468485

RESUMO

PURPOSE: We aimed to generate and characterize a novel cell line from a breast cancer bone metastasis to better study the progression of the disease. METHODS: The cell line, P7731, was derived from a metastatic bone lesion of a breast cancer patient and assessed for marker expression. P7731 was analyzed for DNA copy number variation, somatic mutations, and gene expression and was compared with the primary tumor. RESULTS: P7731 cells are negative for estrogen receptor alpha (ERα), progesterone receptor (PR), and HER2 (triple-negative); strongly express vimentin (100% of cells positive) and also express cytokeratins 8/18 and 19 but at lower frequencies. Flow cytometry indicates P7731 cells are predominantly CD44+/CD49f+/EpCAM-, consistent with a primitive, mesenchymal-like phenotype. The cell line is tumorigenic in immunocompromised mice. Exome sequencing identified a total of 45 and 76 somatic mutations in the primary tumor and cell line, respectively, of which 32 were identified in both samples and included mutations in known driver genes PIK3CA, TP53, and ARID1A. P7731 retains the DNA copy number alterations present in the matching primary tumor. Homozygous deletions detected in the cell line and in the primary tumor were found in regions containing three known (CDKN2A, CDKN2B, and CDKN1B) and 23 putative tumor suppressor genes. Cell line-specific gene amplification coupled with mRNA expression analysis revealed genes and pathways with potential pro-metastatic functions. CONCLUSION: This novel human breast cancer-bone metastasis cell line will be a useful model to study aspects of breast cancer biology, particularly metastasis-related changes from breast to bone.


Assuntos
Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proteínas de Neoplasias/genética , Neoplasias de Mama Triplo Negativas/patologia , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Mama/patologia , Variações do Número de Cópias de DNA/genética , Exoma/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Camundongos , Mutação , Neoplasias de Mama Triplo Negativas/genética
9.
Breast Cancer Res Treat ; 167(1): 289-301, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28889351

RESUMO

PURPOSE: Cell lines are extremely useful tools in breast cancer research. Their key benefits include a high degree of control over experimental variables and reproducibility. However, the advantages must be balanced against the limitations of modelling such a complex disease in vitro. Informed selection of cell line(s) for a given experiment now requires essential knowledge about molecular and phenotypic context in the culture dish. METHODS: We performed multidimensional profiling of 36 widely used breast cancer cell lines that were cultured under standardised conditions. Flow cytometry and digital immunohistochemistry were used to compare the expression of 14 classical breast cancer biomarkers related to intrinsic molecular profiles and differentiation states: EpCAM, CD24, CD49f, CD44, ER, AR, HER2, EGFR, E-cadherin, p53, vimentin, and cytokeratins 5, 8/18 and 19. RESULTS: This cell-by-cell analysis revealed striking heterogeneity within cultures of individual lines that would be otherwise obscured by analysing cell homogenates, particularly amongst the triple-negative lines. High levels of p53 protein, but not RNA, were associated with somatic mutations (p = 0.008). We also identified new subgroups using the nanoString PanCancer Pathways panel (730 transcripts representing 13 canonical cancer pathways). Unsupervised clustering identified five groups: luminal/HER2, immortalised ('normal'), claudin-low and two basal clusters, distinguished mostly by baseline expression of TGF-beta and PI3-kinase pathway genes. CONCLUSION: These features are compared with other published genotype and phenotype information in a user-friendly reference table to help guide selection of the most appropriate models for in vitro and in vivo studies, and as a framework for classifying new patient-derived cancer cell lines and xenografts.


Assuntos
Neoplasias da Mama/genética , Perfilação da Expressão Gênica , Heterogeneidade Genética , Proteínas de Neoplasias/genética , Linhagem Celular Tumoral , Feminino , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/genética , Genótipo , Humanos , Fenótipo
10.
Breast Cancer Res ; 18(1): 18, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26861772

RESUMO

BACKGROUND: The complex interaction between multiple cell types and the microenvironment underlies the diverse pathways to carcinogenesis and necessitates sophisticated approaches to in vitro hypotheses testing. The combination of mixed culture format with high content immunofluorescence screening technology provides a powerful platform for observation of cell type specific behavior. METHODS: We have developed a versatile, high-throughput method for assessing cell-type specific responses. In addition to the specificity and sensitivity offered traditionally by immunofluorescent detection in flow cytometry, the 'in-cell' analysis method we describe provides the added benefits of higher throughput and the ability to analyse protein subcellular localisation in situ. Furthermore, elimination of the cell dissociation step allows for more immediate analysis of responses to specific extrinsic stimuli. We applied this method to investigate ionising radiation treatment response in normal breast epithelial cells, measuring growth rate, cell cycle response and double-strand DNA breaks. RESULTS: The 'in-cell' analysis approach elucidated several interesting donor and cell-type specific differences. Notably, in response to ionizing radiation we observed differential expression in luminal and basal-like cells of a member of the APOBEC enzyme family, recently identified as a critical driver of an oncogenic signature. Our findings suggest that this enzyme is active in the normal breast epithelium during DNA damage response. CONCLUSIONS: We demonstrate the practical application of a new method for assessing cell-type specific change in mixed cultures, especially the analysis of normal primary cultures, overcoming a major technical issue of dissecting the response of multiple cell types in a heterogeneous population.


Assuntos
Neoplasias da Mama/diagnóstico , Linhagem da Célula/genética , Separação Celular/métodos , Citometria de Fluxo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese/genética , Microambiente Celular/genética , Dano ao DNA/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Imunofluorescência , Humanos , Radiação Ionizante
11.
Genome Res ; 22(5): 885-98, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22406755

RESUMO

Transcriptomic analyses have identified tens of thousands of intergenic, intronic, and cis-antisense long noncoding RNAs (lncRNAs) that are expressed from mammalian genomes. Despite progress in functional characterization, little is known about the post-transcriptional regulation of lncRNAs and their half-lives. Although many are easily detectable by a variety of techniques, it has been assumed that lncRNAs are generally unstable, but this has not been examined genome-wide. Utilizing a custom noncoding RNA array, we determined the half-lives of ∼800 lncRNAs and ∼12,000 mRNAs in the mouse Neuro-2a cell line. We find only a minority of lncRNAs are unstable. LncRNA half-lives vary over a wide range, comparable to, although on average less than, that of mRNAs, suggestive of complex metabolism and widespread functionality. Combining half-lives with comprehensive lncRNA annotations identified hundreds of unstable (half-life < 2 h) intergenic, cis-antisense, and intronic lncRNAs, as well as lncRNAs showing extreme stability (half-life > 16 h). Analysis of lncRNA features revealed that intergenic and cis-antisense RNAs are more stable than those derived from introns, as are spliced lncRNAs compared to unspliced (single exon) transcripts. Subcellular localization of lncRNAs indicated widespread trafficking to different cellular locations, with nuclear-localized lncRNAs more likely to be unstable. Surprisingly, one of the least stable lncRNAs is the well-characterized paraspeckle RNA Neat1, suggesting Neat1 instability contributes to the dynamic nature of this subnuclear domain. We have created an online interactive resource (http://stability.matticklab.com) that allows easy navigation of lncRNA and mRNA stability profiles and provides a comprehensive annotation of ~7200 mouse lncRNAs.


Assuntos
Genoma , Camundongos/genética , Estabilidade de RNA , RNA não Traduzido/metabolismo , Análise de Variância , Animais , Linhagem Celular Tumoral , Análise por Conglomerados , Expressão Gênica , Meia-Vida , Humanos , Anotação de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/genética
12.
EMBO J ; 28(7): 799-809, 2009 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-19214183

RESUMO

Telomere lengths are maintained in many cancer cells by the ribonucleoprotein enzyme telomerase but can be further elongated by increasing telomerase activity through the overexpression of telomerase components. We report here that increased telomerase activity results in increased telomere length that eventually reaches a plateau, accompanied by the generation of telomere length heterogeneity and the accumulation of extrachromosomal telomeric repeat DNA, principally in the form of telomeric circles (t-circles). Telomeric DNA was observed in promyelocytic leukemia bodies, but no intertelomeric copying or telomere exchange events were identified, and there was no increase in telomere dysfunction-induced foci. These data indicate that human cells possess a mechanism to negatively regulate telomere length by trimming telomeric DNA from the chromosome ends, most likely by t-loop resolution to form t-circles. Additionally, these results indicate that some phenotypic characteristics attributed to alternative lengthening of telomeres (ALT) result from increased mean telomere length, rather than from the ALT mechanism itself.


Assuntos
Telômero/química , Telômero/metabolismo , Linhagem Celular Tumoral , DNA Circular/metabolismo , Células HeLa , Humanos , Leucemia Promielocítica Aguda/metabolismo , Telomerase/metabolismo
13.
Nat Commun ; 14(1): 5758, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37717006

RESUMO

Cells within the tumour microenvironment (TME) can impact tumour development and influence treatment response. Computational approaches have been developed to deconvolve the TME from bulk RNA-seq. Using scRNA-seq profiling from breast tumours we simulate thousands of bulk mixtures, representing tumour purities and cell lineages, to compare the performance of nine TME deconvolution methods (BayesPrism, Scaden, CIBERSORTx, MuSiC, DWLS, hspe, CPM, Bisque, and EPIC). Some methods are more robust in deconvolving mixtures with high tumour purity levels. Most methods tend to mis-predict normal epithelial for cancer epithelial as tumour purity increases, a finding that is validated in two independent datasets. The breast cancer molecular subtype influences this mis-prediction. BayesPrism and DWLS have the lowest combined numbers of false positives and false negatives, and have the best performance when deconvolving granular immune lineages. Our findings highlight the need for more single-cell characterisation of rarer cell types, and suggest that tumour cell compositions should be considered when deconvolving the TME.


Assuntos
Neoplasias Mamárias Animais , Música , Animais , Microambiente Tumoral , Linhagem da Célula , RNA-Seq
14.
Sci Rep ; 13(1): 7395, 2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149669

RESUMO

Uncertainty estimation is crucial for understanding the reliability of deep learning (DL) predictions, and critical for deploying DL in the clinic. Differences between training and production datasets can lead to incorrect predictions with underestimated uncertainty. To investigate this pitfall, we benchmarked one pointwise and three approximate Bayesian DL models for predicting cancer of unknown primary, using three RNA-seq datasets with 10,968 samples across 57 cancer types. Our results highlight that simple and scalable Bayesian DL significantly improves the generalisation of uncertainty estimation. Moreover, we designed a prototypical metric-the area between development and production curve (ADP), which evaluates the accuracy loss when deploying models from development to production. Using ADP, we demonstrate that Bayesian DL improves accuracy under data distributional shifts when utilising 'uncertainty thresholding'. In summary, Bayesian DL is a promising approach for generalising uncertainty, improving performance, transparency, and safety of DL models for deployment in the real world.


Assuntos
Aprendizado Profundo , Teorema de Bayes , Reprodutibilidade dos Testes , Incerteza , Oncologia
15.
J Clin Invest ; 133(1)2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36594463

RESUMO

Control of intracellular parasites responsible for malaria requires host IFN-γ+T-bet+CD4+ T cells (Th1 cells) with IL-10 produced by Th1 cells to mitigate the pathology induced by this inflammatory response. However, these IL-10-producing Th1 (induced type I regulatory [Tr1]) cells can also promote parasite persistence or impair immunity to reinfection or vaccination. Here, we identified molecular and phenotypic signatures that distinguished IL-10-Th1 cells from IL-10+Tr1 cells in Plasmodium falciparum-infected people who participated in controlled human malaria infection studies, as well as C57BL/6 mice with experimental malaria caused by P. berghei ANKA. We also identified a conserved Tr1 cell molecular signature shared between patients with malaria, dengue, and graft-versus-host disease. Genetic manipulation of primary human CD4+ T cells showed that the transcription factor cMAF played an important role in the induction of IL-10, while BLIMP-1 promoted the development of human CD4+ T cells expressing multiple coinhibitory receptors. We also describe heterogeneity of Tr1 cell coinhibitory receptor expression that has implications for targeting these molecules for clinical advantage during infection. Overall, this work provides insights into CD4+ T cell development during malaria that offer opportunities for creation of strategies to modulate CD4+ T cell functions and improve antiparasitic immunity.


Assuntos
Malária , Linfócitos T Reguladores , Camundongos , Animais , Humanos , Células Th1 , Interleucina-10 , Camundongos Endogâmicos C57BL , Malária/genética , Linfócitos T CD4-Positivos
16.
Nat Commun ; 14(1): 3155, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258531

RESUMO

Oesophageal adenocarcinoma is a poor prognosis cancer and the molecular features underpinning response to treatment remain unclear. We investigate whole genome, transcriptomic and methylation data from 115 oesophageal adenocarcinoma patients mostly from the DOCTOR phase II clinical trial (Australian New Zealand Clinical Trials Registry-ACTRN12609000665235), with exploratory analysis pre-specified in the study protocol of the trial. We report genomic features associated with poorer overall survival, such as the APOBEC mutational and RS3-like rearrangement signatures. We also show that positron emission tomography non-responders have more sub-clonal genomic copy number alterations. Transcriptomic analysis categorises patients into four immune clusters correlated with survival. The immune suppressed cluster is associated with worse survival, enriched with myeloid-derived cells, and an epithelial-mesenchymal transition signature. The immune hot cluster is associated with better survival, enriched with lymphocytes, myeloid-derived cells, and an immune signature including CCL5, CD8A, and NKG7. The immune clusters highlight patients who may respond to immunotherapy and thus may guide future clinical trials.


Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Humanos , Terapia Neoadjuvante , Multiômica , Austrália , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética
17.
Commun Biol ; 5(1): 600, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725766

RESUMO

Cellular development is tightly regulated as mature cells with aberrant functions may initiate pathogenic processes. The endometrium is a highly regenerative tissue, shedding and regenerating each month. Endometrial stromal fibroblasts are regenerated each cycle from mesenchymal stem cells and play a pivotal role in endometriosis, a disease characterised by endometrial cells that grow outside the uterus. Why the cells of some women are more capable of developing into endometriosis lesions is not clear. Using isolated, purified and cultured endometrial cells of mesenchymal origin from 19 women with (n = 10) and without (n = 9) endometriosis we analysed the transcriptome of 33,758 individual cells and compared these to clinical characteristics and in vitro growth profiles. We show purified mesenchymal cell cultures include a mix of mesenchymal stem cells and two endometrial stromal fibroblast subtypes with distinct transcriptomic signatures indicative of varied progression through the differentiation processes. The fibroblast subgroup characterised by incomplete differentiation was predominantly (81%) derived from women with endometriosis and exhibited an altered in vitro growth profile. These results uncover an inherent difference in endometrial cells of women with endometriosis and highlight the relevance of cellular differentiation and its potential to contribute to disease susceptibility.


Assuntos
Endometriose , Células-Tronco Mesenquimais , Diferenciação Celular , Endometriose/genética , Endométrio , Feminino , Fibroblastos/patologia , Humanos
18.
Theranostics ; 12(16): 6826-6847, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276649

RESUMO

Rationale: The blood-brain barrier (BBB) is a major impediment to therapeutic intracranial drug delivery for the treatment of neurodegenerative diseases, including Alzheimer's disease (AD). Focused ultrasound applied together with microbubbles (FUS+MB) is a novel technique to transiently open the BBB and increase drug delivery. Evidence suggests that FUS+MB is safe, however, the effects of FUS+MB on human BBB cells, especially in the context of AD, remain sparsely investigated. In addition, there currently are no cell platforms to test for FUS+MB-mediated drug delivery. Methods: Here we generated BBB cells (induced brain endothelial-like cells (iBECs) and astrocytes (iAstrocytes)) from apolipoprotein E gene allele E4 (APOE4, high sporadic AD risk) and allele E3 (APOE3, lower AD risk) carrying patient-derived induced pluripotent stem cells (iPSCs). We established mono- and co-culture models of human sporadic AD and control BBB cells to investigate the effects of FUS+MB on BBB cell phenotype and to screen for the delivery of two potentially therapeutic AD antibodies, an Aducanumab-analogue (AduhelmTM; anti-amyloid-ß) and a novel anti-Tau antibody, RNF5. We then developed a novel hydrogel-based 2.5D BBB model as a step towards a more physiologically relevant FUS+MB drug delivery platform. Results: When compared to untreated cells, the delivery of Aducanumab-analogue and RNF5 was significantly increased (up to 1.73 fold), across the Transwell-based BBB models following FUS+MB treatment. Our results also demonstrated the safety of FUS+MB indicated by minimal changes in iBEC transcriptome as well as little or no changes in iBEC or iAstrocyte viability and inflammatory responses within the first 24 h post FUS+MB. Furthermore, we demonstrated successful iBEC barrier formation in our novel 2.5D hydrogel-based BBB model with significantly increased delivery (1.4 fold) of Aducanumab-analogue following FUS+MB. Conclusion: Our results demonstrate a robust and reproducible approach to utilize patient cells for FUS+MB-mediated drug delivery screening in vitro. With such a cell platform for FUS+MB research previously not reported, it has the potential to identify novel FUS+MB-deliverable drugs as well as screen for cell- and patient-specific effects of FUS+MB, accelerating the use of FUS+MB as a therapeutic modality in AD.


Assuntos
Doença de Alzheimer , Anticorpos Monoclonais Humanizados , Barreira Hematoencefálica , Humanos , Doença de Alzheimer/tratamento farmacológico , Apolipoproteína E3/metabolismo , Apolipoproteína E4/metabolismo , Encéfalo/fisiologia , Sistemas de Liberação de Medicamentos/métodos , Hidrogéis , Microbolhas , Anticorpos Monoclonais Humanizados/administração & dosagem
19.
J Exp Clin Cancer Res ; 41(1): 355, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36539830

RESUMO

BACKGROUND: High-grade serous ovarian carcinomas (HGSCs) are a heterogeneous subtype of epithelial ovarian cancers and include serous cancers arising in the fallopian tube and peritoneum. These cancers are now subdivided into homologous recombination repair (HR)-deficient and proficient subgroups as this classification impacts on management and prognosis. PARP inhibitors (PARPi) have shown significant clinical efficacy, particularly as maintenance therapy following response to platinum-based chemotherapy in BRCA-mutant or homologous recombination (HR)-deficient HGSCs in both the 1st and 2nd line settings. However, PARPi have limited clinical benefit in HR-proficient HGSCs which make up almost 50% of HGSC and improving outcomes in these patients is now a high priority due to the poor prognosis with ineffectiveness of the current standard of care. There are a number of potential lines of investigation including efforts in sensitizing HR-proficient tumors to PARPi. Herein, we aimed to develop a novel combination therapy by targeting SSRP1 using a small molecule inhibitor CBL0137 with PARPi in HR-proficient HGSCs. EXPERIMENTAL DESIGN: We tested anti-cancer activity of CBL0137 monotherapy using a panel of HGSC cell lines and patient-derived tumor cells in vitro. RNA sequencing was used to map global transcriptomic changes in CBL0137-treated patient-derived HR-proficient HGSC cells. We tested efficacy of CBL0137 in combination with PARPi using HGSC cell lines and patient-derived tumor cells in vitro and in vivo. RESULTS: We show that SSRP1 inhibition using a small molecule, CBL0137, that traps SSRP1 onto chromatin, exerts a significant anti-growth activity in vitro against HGSC cell lines and patient-derived tumor cells, and also reduces tumor burden in vivo. CBL0137 induced DNA repair deficiency via inhibition of the HR repair pathway and sensitized SSRP1-high HR-proficient HGSC cell lines and patient-derived tumor cells/xenografts to the PARPi, Olaparib in vitro and in vivo. CBL0137 also enhanced the efficacy of DNA damaging platinum-based chemotherapy in HGSC patient-derived xenografts. CONCLUSION: Our findings strongly suggest that combination of CBL0137 and PARP inhibition represents a novel therapeutic strategy for HR-proficient HGSCs that express high levels of SSRP1 and should be investigated in the clinic.


Assuntos
Neoplasias Ovarianas , Inibidores de Poli(ADP-Ribose) Polimerases , Feminino , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Reparo de DNA por Recombinação , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Fatores de Elongação da Transcrição/genética
20.
Clin Transl Immunology ; 11(6): e1396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663920

RESUMO

Objectives: There is an urgent need to be able to identify individuals with asymptomatic Leishmania donovani infection, so their risk of progressing to VL and transmitting parasites can be managed. This study examined transcriptional markers expressed by CD4+ T cells that could distinguish asymptomatic individuals from endemic controls and visceral leishmaniasis (VL) patients. Methods: CD4+ T cells were isolated from individuals with asymptomatic L. donovani infection, endemic controls and VL patients. RNA was extracted and RNAseq employed to identify differentially expressed genes. The expression of one gene and its protein product during asymptomatic infection were evaluated. Results: Amphiregulin (AREG) was identified as a distinguishing gene product in CD4+ T cells from individuals with asymptomatic L. donovani infection, compared to VL patients and healthy endemic control individuals. AREG levels in plasma and antigen-stimulated whole-blood assay cell culture supernatants were significantly elevated in asymptomatic individuals, compared to endemic controls and VL patients. Regulatory T (Treg) cells were identified as an important source of AREG amongst CD4+ T-cell subsets in asymptomatic individuals. Conclusion: Increased Treg cell AREG expression was identified in individuals with asymptomatic L. donovani infection, suggesting the presence of an ongoing inflammatory response in these individuals required for controlling infection and that AREG may play an important role in preventing inflammation-induced tissue damage and subsequent disease in asymptomatic individuals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA