Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 53(20): 11666-11674, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31532641

RESUMO

A key concern with agricultural wastewater storage ponds is that they may provide an environment conducive for horizontal exchange of antibiotic resistance genes (ARGs), thereby facilitating the emergence of antibiotic resistant pathogens. Central to this exchange are mobile genetic elements like plasmids; yet, the factors shaping their presence in agricultural environments remain poorly understood. Here, using Escherichia coli as a model bacterium, we examined genetic backgrounds and plasmid profiles of generic fecal and wastewater isolates and those possessing blaCTX-M and blaCMY-2 genes (which confer resistance to third-generation cephalosporins) to delineate factors shaping the environmental persistence of plasmid-associated ARGs in beef cattle feedlots. The wastewater environment exerted minimal influence on plasmid repertoires, as the number of plasmids and distribution of different incompatibility groups did not differ between generic fecal and wastewater isolates. The blaCTX-M and blaCMY-2 genes were associated with IncF and IncA/C plasmids, respectively, and host isolates possessing these ARGs had fewer plasmids than generic isolates, suggesting ARG-bearing plasmids may associate predominantly with such hosts to compensate for the metabolic burden imposed by these plasmids. Phylogeny also appeared to be a factor for blaCTX-M genes, as their bacterial hosts were restricted to particular genetic lineages, including the environmentally adapted ET-1 clade, as noted previously for these genes. Ultimately, these findings have important implications for evaluating human health risks of agricultural wastewater with respect to environmental persistence of ARGs and may help identify options for improving wastewater treatment.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Antibacterianos , Bovinos , Resistência às Cefalosporinas , Humanos , Gado , Plasmídeos , Águas Residuárias , beta-Lactamases
2.
Appl Environ Microbiol ; 80(12): 3708-20, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24727274

RESUMO

Surface waters from paired agricultural watersheds under controlled tile drainage (CTD) and uncontrolled tile drainage (UCTD) were monitored over 7 years in order to determine if there was an effect of CTD (imposed during the growing season) on occurrences and loadings of bacterial and viral pathogens, coliphages, and microbial source tracking markers. There were significantly lower occurrences of human, ruminant, and livestock (ruminant plus pig) Bacteroidales markers in the CTD watershed in relation to the UCTD watershed. As for pathogens, there were significantly lower occurrences of Salmonella spp. and Arcobacter spp. in the CTD watershed. There were no instances where there were significantly higher quantitative loadings of any microbial target in the CTD watershed, except for F-specific DNA (F-DNA) and F-RNA coliphages, perhaps as a result of fecal inputs from a hobby farm independent of the drainage practice treatments. There was lower loading of the ruminant marker in the CTD watershed in relation to the UCTD system, and results were significant at the level P = 0.06. The odds of Salmonella spp. occurring increased when a ruminant marker was present relative to when the ruminant marker was absent, yet for Arcobacter spp., the odds of this pathogen occurring significantly decreased when a ruminant marker was present relative to when the ruminant marker was absent (but increased when a wildlife marker was present relative to when the wildlife marker was absent). Interestingly, the odds of norovirus GII (associated with human and swine) occurring in water increased significantly when a ruminant marker was present relative to when a ruminant marker was absent. Overall, this study suggests that fecal pollution from tile-drained fields to stream could be reduced by CTD utilization.


Assuntos
Bactérias/isolamento & purificação , Biomarcadores/química , Monitoramento Ambiental , Rios/microbiologia , Rios/virologia , Vírus/isolamento & purificação , Agricultura , Animais , Bactérias/genética , Humanos , Rios/química , Estações do Ano , Vírus/genética , Microbiologia da Água
3.
Appl Environ Microbiol ; 79(20): 6207-19, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23913430

RESUMO

Over 1,400 water samples were collected biweekly over 6 years from an intermittent stream protected and unprotected from pasturing cattle. The samples were monitored for host-specific Bacteroidales markers, Cryptosporidium species/genotypes, viruses and coliphages associated with humans or animals, and bacterial zoonotic pathogens. Ruminant Bacteroidales markers did not increase within the restricted cattle access reach of the stream, whereas the ruminant Bacteroidales marker increased significantly in the unrestricted cattle access reach. Human Bacteroidales markers significantly increased downstream of homes where septic issues were documented. Wildlife Bacteroidales markers were detected downstream of the cattle exclusion practice where stream and riparian habitat was protected, but detections decreased after the unrestricted pasture, where the stream and riparian zone was unprotected from livestock. Detection of a large number of human viruses was shown to increase downstream of homes, and similar trends were observed for the human Bacteroidales marker. There was considerable interplay among biomarkers with stream flow, season, and the cattle exclusion practices. There were no to very weak associations with Bacteroidales markers and bacterial, viral, and parasitic pathogens. Overall, discrete sample-by-sample coherence among the different microbial source tracking markers that expressed a similar microbial source was minimal, but spatial trends were physically meaningful in terms of land use (e.g., beneficial management practice) effects on sources of fecal pollution.


Assuntos
Bacteroidetes/isolamento & purificação , Cryptosporidium/isolamento & purificação , Rios/microbiologia , Rios/virologia , Vírus/isolamento & purificação , Poluição da Água , Animais , Bacteroidetes/classificação , Bovinos , Humanos , Rios/parasitologia , Vírus/classificação
4.
Appl Environ Microbiol ; 79(2): 434-48, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23124241

RESUMO

Nearly 690 raw surface water samples were collected during a 6-year period from multiple watersheds in the South Nation River basin, Ontario, Canada. Cryptosporidium oocysts in water samples were enumerated, sequenced, and genotyped by detailed phylogenetic analysis. The resulting species and genotypes were assigned to broad, known host and human infection risk classes. Wildlife/unknown, livestock, avian, and human host classes occurred in 21, 13, 3, and <1% of sampled surface waters, respectively. Cryptosporidium andersoni was the most commonly detected livestock species, while muskrat I and II genotypes were the most dominant wildlife genotypes. The presence of Giardia spp., Salmonella spp., Campylobacter spp., and Escherichia coli O157:H7 was evaluated in all water samples. The greatest significant odds ratios (odds of pathogen presence when host class is present/odds of pathogen presence when host class is absent) for Giardia spp., Campylobacter spp., and Salmonella spp. in water were associated, respectively, with livestock (odds ratio of 3.1), avian (4.3), and livestock (9.3) host classes. Classification and regression tree analyses (CART) were used to group generalized host and human infection risk classes on the basis of a broad range of environmental and land use variables while tracking cooccurrence of zoonotic pathogens in these groupings. The occurrence of livestock-associated Cryptosporidium was most strongly related to agricultural water pollution in the fall (conditions also associated with elevated odds ratios of other zoonotic pathogens occurring in water in relation to all sampling conditions), whereas wildlife/unknown sources of Cryptosporidium were geospatially associated with smaller watercourses where urban/rural development was relatively lower. Conditions that support wildlife may not necessarily increase overall human infection risks associated with Cryptosporidium since most Cryptosporidium genotypes classed as wildlife in this study (e.g., muskrat I and II genotype) do not pose significant infection risks to humans. Consequently, from a human health perspective, land use practices in agricultural watersheds that create opportunities for wildlife to flourish should not be rejected solely on the basis of their potential to increase relative proportions of wildlife fecal contamination in surface water. The present study suggests that mitigating livestock fecal pollution in surface water in this region would likely reduce human infection risks associated with Cryptosporidium and other zoonotic pathogens.


Assuntos
Cryptosporidium/classificação , Cryptosporidium/isolamento & purificação , Variação Genética , Filogeografia , Água/parasitologia , Animais , Animais Selvagens/parasitologia , Bactérias/isolamento & purificação , Criptosporidiose/epidemiologia , Criptosporidiose/transmissão , Cryptosporidium/genética , Genótipo , Giardia/isolamento & purificação , Humanos , Ontário , Carga Parasitária , Medição de Risco , Análise Espaço-Temporal , Fatores de Tempo
5.
Foodborne Pathog Dis ; 10(9): 747-56, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23786604

RESUMO

Most bacterial pathogens associated with human enteric illness have zoonotic origins and can be transmitted directly from animals to people or indirectly through food and water. This multitude of potential exposure routes and sources makes the epidemiology of these infectious agents complex. To better understand these illnesses and identify solutions to reduce human disease, an integrative approach like One Health is needed. This article considers the issue of Salmonella in Canada and interprets data collected by several Canadian surveillance and research programs. We describe recovery of Salmonella from various samples collected along the exposure pathway and compare the serovars detected in the different components under surveillance (animal, food, environment, and human). We then present three examples to illustrate how an approach that interprets multiple sources of surveillance data together is able to address issues that transcend multiple departments and jurisdictions. First, differences observed in recovery of Salmonella from different cuts of fresh chicken collected by different programs emphasize the importance of considering the surveillance objectives and how they may influence the information that is generated. Second, the high number of Salmonella Enteritidis cases in Canada is used to illustrate the importance of ongoing, concurrent surveillance of human cases and exposure sources to information domestic control and prevention strategies. Finally, changing patterns in the occurrence of ceftiofur-resistant Salmonella Heidelberg in retail meats and humans demonstrates how integrated surveillance can identify an issue in an exposure source and link it to a trend in human disease. Taken together, surveillance models that encompass different scales can leverage infrastructure, costs, and benefits and generate a multidimensional picture that can better inform disease prevention and control programs.


Assuntos
Monitoramento Ambiental , Contaminação de Alimentos/prevenção & controle , Carne/microbiologia , Salmonella enteritidis/isolamento & purificação , Animais , Antibacterianos/farmacologia , Canadá , Bovinos , Cefalosporinas/farmacologia , Galinhas , Farmacorresistência Bacteriana Múltipla , Microbiologia de Alimentos , Humanos , Testes de Sensibilidade Microbiana , Salmonella enteritidis/efeitos dos fármacos , Suínos
6.
J Clin Microbiol ; 50(3): 788-97, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22170908

RESUMO

Campylobacter spp. are a leading cause of bacterial gastroenteritis worldwide. The need for molecular subtyping methods with enhanced discrimination in the context of surveillance- and outbreak-based epidemiologic investigations of Campylobacter spp. is critical to our understanding of sources and routes of transmission and the development of mitigation strategies to reduce the incidence of campylobacteriosis. We describe the development and validation of a rapid and high-resolution comparative genomic fingerprinting (CGF) method for C. jejuni. A total of 412 isolates from agricultural, environmental, retail, and human clinical sources obtained from the Canadian national integrated enteric pathogen surveillance program (C-EnterNet) were analyzed using a 40-gene assay (CGF40) and multilocus sequence typing (MLST). The significantly higher Simpson's index of diversity (ID) obtained with CGF40 (ID = 0.994) suggests that it has a higher discriminatory power than MLST at both the level of clonal complex (ID = 0.873) and sequence type (ID = 0.935). High Wallace coefficients obtained when CGF40 was used as the primary typing method suggest that CGF and MLST are highly concordant, and we show that isolates with identical MLST profiles are comprised of isolates with distinct but highly similar CGF profiles. The high concordance with MLST coupled with the ability to discriminate between closely related isolates suggests that CFG40 is useful in differentiating highly prevalent sequence types, such as ST21 and ST45. CGF40 is a high-resolution comparative genomics-based method for C. jejuni subtyping with high discriminatory power that is also rapid, low cost, and easily deployable for routine epidemiologic surveillance and outbreak investigations.


Assuntos
Campylobacter jejuni/classificação , Campylobacter jejuni/genética , Impressões Digitais de DNA/métodos , Tipagem Molecular/métodos , Animais , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/veterinária , Campylobacter jejuni/isolamento & purificação , Canadá , Análise por Conglomerados , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/microbiologia , Genótipo , Humanos , Epidemiologia Molecular/métodos
7.
J Environ Qual ; 41(1): 242-52, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22218192

RESUMO

In regions where animal agriculture is prominent, such as southern Alberta, higher rates of gastrointestinal illness have been reported when compared with nonagricultural regions. This difference in the rate of illness is thought to be a result of increased zoonotic pathogen exposure through environmental sources such as water. In this study, temporal and spatial factors associated with bacterial pathogen contamination of the Oldman River, which transverses this region, were analyzed using classification and regression tree analysis. Significantly higher levels of fecal indicators; more frequent isolations of Campylobacter spp., Escherichia coli O157:H7, and Salmonella enterica spp.; and higher rates of detection of pig-specific Bacteroides markers occurred at downstream sites than at upstream sites, suggesting additive stream inputs. Fecal indicator densities were also significantly higher when any one of these three bacterial pathogens was present and where there were higher total animal manure units; however, occasionally pathogens were present when fecal indicator levels were low or undetectable. Overall, Salmonella spp., Campylobacter spp., and E. coli O157:H7 presence was associated with season, animal manure units, and total rainfall on the day of sampling and 3 d in advance of sampling. Several of the environmental variables analyzed in this study appear to influence pathogen prevalence and therefore may be useful in predicting water quality and safety and in the improvement of watershed management practices in this and other agricultural regions.


Assuntos
Agricultura , Bactérias/isolamento & purificação , Microbiologia da Água/normas , Movimentos da Água , Zoonoses/microbiologia , Alberta , Animais , Biomarcadores , Monitoramento Ambiental , Estações do Ano , Fatores de Tempo
8.
J Water Health ; 8(2): 374-86, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20154400

RESUMO

In this study, we wished to assess the prevalence and determine the sources of three zoonotic bacterial pathogens (Salmonella, Campylobacter, and Escherichia coli O157:H7) in the Salmon River watershed in southwestern British Columbia. Surface water, sewage, and animal faecal samples were collected from the watershed. Selective bacterial culture and PCR techniques were used to isolate these three pathogens and indicator bacteria from these samples and characterize them. Campylobacter was the most prevalent pathogen in all samples, followed by Salmonella, and E. coli O157:H7. E. coli O157:H7 and Salmonella isolation rates from water, as well as faecal coliform densities correlated positively with precipitation, while Campylobacter isolation rates correlated negatively with precipitation. Analysis of DNA extracted from water samples for the presence of Bacteroides host-species markers, and comparisons of C. jejuni flaA-RFLP types and Salmonella serovars from faecal and water samples provided evidence that human sewage and specific domestic and wild animal species were sources of these pathogens; however, in most cases the source could not be determined or more than one source was possible. The frequent isolation of these zoonotic pathogens in the Salmon River highlights the risks to human health associated with intentional and unintentional consumption of untreated surface waters.


Assuntos
Campylobacter/isolamento & purificação , Escherichia coli O157/isolamento & purificação , Fezes/microbiologia , Água Doce/microbiologia , Salmonella enterica/isolamento & purificação , Esgotos/microbiologia , Criação de Animais Domésticos , Animais , Tipagem de Bacteriófagos , Colúmbia Britânica , Enterobacteriaceae/isolamento & purificação , Genes Bacterianos , Humanos , Sorotipagem , Zoonoses/microbiologia
9.
Microb Genom ; 6(6)2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32496181

RESUMO

Verotoxigenic Escherichia coli (VTEC) are food- and water-borne pathogens associated with both sporadic illness and outbreaks of enteric disease. While it is known that cattle are reservoirs of VTEC, little is known about the genomic variation of VTEC in cattle, and whether the variation in genomes reported for human outbreak strains is consistent with individual animal or group/herd sources of infection. A previous study of VTEC prevalence identified serotypes carried persistently by three consecutive cohorts of heifers within a closed herd of cattle. This present study aimed to: (i) determine whether the genomic relatedness of bovine isolates is similar to that reported for human strains associated with single source outbreaks, (ii) estimate the rates of genome change among dominant serotypes over time within a cattle herd, and (iii) identify genomic features of serotypes associated with persistence in cattle. Illumina MiSeq genome sequencing and genotyping based on allelic and single nucleotide variations were completed, while genome change over time was measured using Bayesian evolutionary analysis sampling trees. The accessory genome, including the non-protein-encoding intergenic regions (IGRs), virulence factors, antimicrobial-resistance genes and plasmid gene content of representative persistent and sporadic cattle strains were compared using Fisher's exact test corrected for multiple comparisons. Herd strains from serotypes O6:H34 (n=22), O22:H8 (n=30), O108:H8 (n=39), O139:H19 (n=44) and O157:H7 (n=106) were readily distinguishable from epidemiologically unrelated strains of the same serotype using a similarity threshold of 10 or fewer allele differences between adjacent nodes. Temporal-cohort clustering within each serotype was supported by date randomization analysis. Substitutions per site per year were consistent with previously reported values for E. coli; however, there was low branch support for these values. Acquisition of the phage-encoded Shiga toxin 2 gene in serotype O22:H8 was observed. Pan-genome analyses identified accessory regions that were more prevalent in persistent serotypes (P≤0.05) than in sporadic serotypes. These results suggest that VTEC serotypes from a specific cattle population are highly clonal with a similar level of relatedness as human single-source outbreak-associated strains, but changes in the genome occur gradually over time. Additionally, elements in the accessory genomes may provide a selective advantage for persistence of VTEC within cattle herds.


Assuntos
Doenças dos Bovinos/microbiologia , Infecções por Escherichia coli/microbiologia , Polimorfismo de Nucleotídeo Único , Escherichia coli Shiga Toxigênica/classificação , Sequenciamento Completo do Genoma/métodos , Animais , Teorema de Bayes , Canadá , Bovinos , Infecções por Escherichia coli/veterinária , Evolução Molecular , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Filogenia , Sorogrupo , Toxina Shiga II/genética , Escherichia coli Shiga Toxigênica/genética
10.
Water Res ; 43(8): 2209-23, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19339033

RESUMO

The South Nation River basin in eastern Ontario, Canada is characterized by mixed agriculture. Over 1600 water samples were collected on a bi-weekly basis from up to 24 discrete sampling sites on river tributaries of varying stream order within the river basin between 2004 and 2006. Water samples were analyzed for: densities of indicator bacteria (Escherichia coli, Clostridium perfringens, enterococci, total and fecal coliforms), the presence of pathogenic bacteria (Listeria monocytogenes, E. coli O157:H7, Salmonella spp., Campylobacter spp.), and densities of parasite Giardia cysts and Cryptosporidium oocysts. Relationships between indicator bacteria, pathogens, and parasite oocysts/cysts were overall weak, seasonally dependent, site specific, but primarily positive. However, L. monocytogenes was inversely related with indicator bacteria densities. Campylobacter, Salmonella, Giardia cysts and Cryptosporidium oocysts were most frequently detected in the fall. E. coli O157:H7 was detected at a very low frequency. Exploratory decision tree analyses found overall that E. coli densities were the most utilitarian classifiers of parasite/pathogen presence and absence, followed closely by fecal coliforms, and to a lesser extent enterococci and total coliforms. Indicator bacteria densities that classified pathogen presence and absence groupings, were all below 100 CFU per 100 mL(-1). Microorganism relationships with rainfall indices and tributary discharge variables were globally weak to modest, and generally inconsistent among season, site and microorganism. But, overall rainfall and discharge were primarily positively associated with indicator bacteria densities and pathogen detection. Instances where a pathogen was detected in the absence of a detectable bacterial indicator were extremely infrequent; thus, the fecal indicators were conservative surrogates for a variety of pathogenic microorganisms in this agricultural setting. The results from this study indicate that no one indicator or simple hydrological index is entirely suitable for all environmental systems and pathogens/parasites, even within a common geographic setting. These results place more firmly into context that robust prediction and/or indicator utility will require a more firm understanding of microorganism distribution in the landscape, the nature of host sources, and transport/environmental fate affinities among pathogens and indicators.


Assuntos
Agricultura , Bactérias/crescimento & desenvolvimento , Cryptosporidium/crescimento & desenvolvimento , Giardia/crescimento & desenvolvimento , Oocistos/crescimento & desenvolvimento , Estações do Ano , Microbiologia da Água , Animais , Canadá , Parasitos/crescimento & desenvolvimento , Rios/microbiologia , Estatísticas não Paramétricas , Propriedades de Superfície
11.
Water Res ; 156: 148-158, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30913418

RESUMO

Nearly half of all cases of foodborne illness are associated with plant-based foods such as leafy greens and raw flour. An important potential source of pathogen contamination along the food-production continuum is irrigation water, which has led to the implementation of increasingly stringent agricultural irrigation water quality requirements. To better understand factors impacting irrigation water quality, we investigated sources of generic Escherichia coli and how they varied temporally among different sampling sites. Precipitation, Campylobacter species distribution, and physicochemical water quality parameters were also investigated to substantiate microbial source tracking findings. Biweekly sampling was conducted at a reservoir outlet and two downstream canals in southern Alberta, Canada, throughout two irrigation seasons, the latter of which was notable for drought conditions. Overall, 50% of canal samples exceeded Alberta's irrigation guideline for E. coli (100 E. coli per 100 ml), whereas all reservoir samples were below guideline limits. Collectively, E. coli source apportionment, Campylobacter species distribution, and physicochemical water quality data suggest runoff from surrounding agricultural land was a contributing factor to E. coli guideline exceedances in Year 1 only. In Year 2, the majority of exceedances occurred later in the season when there was little precipitation and were largely attributed to cosmopolitan E. coli from wild birds and cattle. Similarities in E. coli host-source and Campylobacter species distributions between the reservoir and canals when the guideline was exceeded suggest the reservoir could be a primary source of E. coli during drought. Increased bacterial concentrations in canals were likely due to environmental conditions that promoted bacterial survival and in-situ proliferation. Our findings support previous accounts that many E. coli isolates possess enhanced survival capabilities, which has implications to bacterial water quality assessments and risk mitigation, particularly under drought conditions.


Assuntos
Escherichia coli , Microbiologia da Água , Irrigação Agrícola , Alberta , Animais , Bovinos , Inocuidade dos Alimentos
12.
Front Microbiol ; 9: 2040, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233526

RESUMO

In this study, fecal samples were collected from a closed beef herd in Alberta, Canada from 2012 to 2015. To limit serotype bias, which was observed in enrichment broth cultures, Verotoxigenic Escherichia coli (VTEC) were isolated directly from samples using a hydrophobic grid-membrane filter verotoxin immunoblot assay. Overall VTEC isolation rates were similar for three different cohorts of yearling heifers on both an annual (68.5 to 71.8%) and seasonal basis (67.3 to 76.0%). Across all three cohorts, O139:H19 (37.1% of VTEC-positive samples), O22:H8 (15.8%) and O?(O108):H8 (15.4%) were among the most prevalent serotypes. However, isolation rates for serotypes O139:H19, O130:H38, O6:H34, O91:H21, and O113:H21 differed significantly between cohort-years, as did isolation rates for some serotypes within a single heifer cohort. There was a high level of VTEC serotype diversity with an average of 4.3 serotypes isolated per heifer and 65.8% of the heifers classified as "persistent shedders" of VTEC based on the criteria of >50% of samples positive and ≥4 consecutive samples positive. Only 26.8% (90/336) of the VTEC isolates from yearling heifers belonged to the human disease-associated seropathotypes A (O157:H7), B (O26:H11, O111:NM), and C (O22:H8, O91:H21, O113:H21, O137:H41, O2:H6). Conversely, seropathotypes B (O26:NM, O111:NM) and C (O91:H21, O2:H29) strains were dominant (76.0%, 19/25) among VTEC isolates from month-old calves from this herd. Among VTEC from heifers, carriage rates of vt1, vt2, vt1+vt2, eae, and hlyA were 10.7, 20.8, 68.5, 3.9, and 88.7%, respectively. The adhesin gene saa was present in 82.7% of heifer strains but absent from all of 13 eae+ve strains (from serotypes/intimin types O157:H7/γ1, O26:H11/ß1, O111:NM/θ, O84:H2/ζ, and O182:H25/ζ). Phylogenetic relationships inferred from wgMLST and pan genome-derived core SNP analysis showed that strains clustered by phylotype and serotype. Further, VTEC strains of the same serotype usually shared the same suite of antibiotic resistance and virulence genes, suggesting the circulation of dominant clones within this distinct herd. This study provides insight into the diverse and dynamic nature of VTEC populations within groups of cattle and points to a broad spectrum of human health risks associated with these E. coli strains.

13.
Microorganisms ; 6(3)2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30012975

RESUMO

This study aimed to better understand the potential public health risk associated with zoonotic pathogens in agricultural fairs and petting zoos in Canada. Prevalence of Salmonella, Shiga toxin-producing Escherichia coli (STEC) O157:H7, and top six non-O157 STEC serogroups in feces (n = 88), hide/feather (n = 36), and hand rail samples (n = 46) was assessed, as well as distributions of antimicrobial resistant (AMR) broad and extended-spectrum ß-lactamase (ESBL)-producing E. coli. Prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in pig nasal swabs (n = 4), and Campylobacter, Cryptosporidium, and Giardia in feces was also assessed. Neither Salmonella nor MRSA were detected. Campylobacter spp. were isolated from 32% of fecal samples. Cryptosporidium and Giardia were detected in 2% and 15% of fecal samples, respectively. Only one fecal sample was positive for STEC O157, whereas 22% were positive for non-O157 STEC. Multi-drug resistance (MDR) to antibiotics classified as critically and highly important in human medicine was proportionally greatest in E. coli from cattle feces. The ß-lactamase-producing E. coli from pig, horse/donkey feces, and hand rail samples, as well as the STEC E. coli from handrail swabs were MDR. The diversity and prevalence of zoonotic pathogens and AMR bacteria detected within agricultural fairs and petting zoos emphasize the importance of hygienic practices and sanitization with respect to reducing associated zoonotic risks.

14.
Water Res ; 61: 243-52, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24930011

RESUMO

The occurrence and diversity of thermophilic Campylobacter species (C. jejuni, coli, and lari) were studied in water samples from four river basins located across Canada. These basins located in Quebec (Bras d'Henri), Alberta (Oldman), Ontario (South Nation), and British Columbia (Sumas) represented some of the most intensive farming areas in Canada for hog, beef cattle, dairy cattle, and poultry, respectively. This study analyzed 769 water samples collected from 23 monitoring sites with agricultural influence, and four reference sites with limited or no agricultural influence. Water samples were collected bi-weekly over two years and analyzed for Campylobacter using a semi-quantitative minimum probable number (MPN) enrichment protocol. Putative isolates were confirmed by genus- and species-specific multiplex polymerase chain reaction (PCR) assays. A total of 377 (49%) water samples were positive for campylobacters with 355 samples having a cell density ranging from 4 to 4000 MPN L(-1). Campylobacters were more common at agricultural than reference sites in each river basin, although this difference was not significant in the Oldman and South Nation (p > 0.05). Campylobacter was significantly more common in the Bras d'Henri and Sumas (63%) compared to the South Nation (45%) and Oldman (33%) River basins (p < 0.05). C. jejuni, C. coli and C. lari were detected in each river basin, and these species occurred in 45% (n = 168), 34% (n = 128) and 19% (n = 73), of all Campylobacter positive samples, respectively. The remaining Campylobacter positive water samples without these three species (n = 67; 18%) were identified as other Campylobacter species. C. jejuni was the predominant species occurring in the Sumas, Oldman and South Nation River basins. However, in the Bras d'Henri River basin with intensive hog production, C. coli was the predominant species. This study found campylobacters to be common in some agricultural systems with intensive livestock farming activities, and different river basins could have strikingly different profiles of either C. jejuni or C. coli as the predominant waterborne thermophilic Campylobacter species.


Assuntos
Campylobacter coli/isolamento & purificação , Campylobacter jejuni/isolamento & purificação , Campylobacter lari/isolamento & purificação , Água Doce/microbiologia , Agricultura , Campylobacter coli/genética , Campylobacter jejuni/genética , Campylobacter lari/genética , Canadá , DNA Bacteriano/análise , DNA Bacteriano/genética , Reação em Cadeia da Polimerase Multiplex , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética
15.
Water Res ; 47(7): 2315-24, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23497974

RESUMO

Over a seven-year period (2004-2010) 1095 water samples were obtained from the South Nation River basin at multiple watershed monitoring sites (Ontario, Canada). Real-time PCR using Bacteroidales specific markers was used to identify the origin (human (10% prevalence), ruminant (22%), pig (~2%), Canada goose (4%) and muskrat (7%)) of fecal pollution. In parallel, the distribution of fecal indicator bacteria and waterborne pathogens (Cryptosporidium oocysts, Giardia cysts, Escherichia coli O157:H7, Salmonella enterica and Campylobacter spp.) was evaluated. Associations between the detection of specific Bacteroidales markers and the presence of fecal indicator bacteria, pathogens, and distinct land use or environmental variables were evaluated. Linear correlations between Bacteroidales markers and fecal indicator bacteria were weak. However, mean marker densities, and the presence and absence of markers could be discriminated on the basis of threshold fecal indicator densities. The ruminant-specific Bacteroidales marker was the most frequently detected marker in water, consistent with the large number of dairy farms in the study area. Detection of the human or the ruminant markers were associated with a slightly higher risk of detecting S. enterica. Detection of the muskrat marker was related to more frequent Campylobacter spp. detections. Important positive associations between markers and pathogens were found among: i) total Bacteroidales and Cryptosporidium and Giardia, ii) ruminant marker and S. enterica, and iii) muskrat and Campylobacter spp.


Assuntos
Bacteroidetes/isolamento & purificação , Monitoramento Ambiental , Fezes/microbiologia , Rios/microbiologia , Microbiologia da Água , Poluição da Água/análise , Animais , Intervalos de Confiança , Humanos , Razão de Chances , Ontário , Estações do Ano
16.
Water Res ; 47(16): 6326-37, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24079968

RESUMO

Developing the capability to predict pathogens in surface water is important for reducing the risk that such organisms pose to human health. In this study, three primary data source scenarios (measured stream flow and water quality, modelled stream flow and water quality, and host-associated Bacteroidales) are investigated within a Classification and Regression Tree Analysis (CART) framework for classifying pathogen (Escherichia coli 0157:H7, Salmonella, Campylobacter, Cryptosporidium, and Giardia) presence and absence (P/A) for a 178 km(2) agricultural watershed. To provide modelled data, a Soil Water Assessment Tool (SWAT) model was developed to predict stream flow, total suspended solids (TSS), total N and total P, and fecal indicator bacteria loads; however, the model was only successful for flow and total N and total P simulations, and did not accurately simulate TSS and indicator bacteria transport. Also, the SWAT model was not sensitive to an observed reduction in the cattle population within the watershed that may have resulted in significant reduction in E. coli concentrations and Salmonella detections. Results show that when combined with air temperature and precipitation, SWAT modelled stream flow and total P concentrations were useful for classifying pathogen P/A using CART methodology. From a suite of host-associated Bacteroidales markers used as independent variables in CART analysis, the ruminant marker was found to be the best initial classifier of pathogen P/A. Of the measured sources of independent variables, air temperature, precipitation, stream flow, and total P were found to be the most important variables for classifying pathogen P/A. Results indicate a close relationship between cattle pollution and pathogen occurrence in this watershed, and an especially strong link between the cattle population and Salmonella detections.


Assuntos
Bactérias/isolamento & purificação , Monitoramento Ambiental , Modelos Teóricos , Microbiologia da Água , Agricultura , Fezes/microbiologia , Água Doce/microbiologia , Água Doce/parasitologia , Abastecimento de Água/normas
17.
J Microbiol Methods ; 91(3): 506-13, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22985716

RESUMO

Improved isolation techniques from environmental water and animal samples are vital to understanding Campylobacter epidemiology. In this study, the efficiency of selective enrichment in Bolton Broth (BB) followed by plating on charcoal cefoperazone deoxycholate agar (CCDA) (conventional method) was compared with an approach combining BB enrichment and passive filtration (membrane method) adapted from a method previously developed for testing of broiler meat, in the isolation of thermophilic campylobacters from surface water and animal fecal samples. The conventional method led to recoveries of Campylobacter from 36.7% of the water samples and 78.0% of the fecal samples and similar numbers, 38.3% and 76.0%, respectively, were obtained with the membrane method. To investigate the genetic diversity of Campylobacter jejuni and Campylobacter coli obtained by these two methods, isolates were analyzed using Comparative Genomic Fingerprinting, a high-resolution subtyping technique. The conventional and membrane methods yielded similar numbers of Campylobacter subtypes from water (25 and 28, respectively) and fecal (15 and 17, respectively) samples. Although there was no significant difference in recovery rates between the conventional and membrane methods, a significant improvement in isolation efficiency was obtained by using the membrane method, with a false-positive rate of 1.6% compared with 30.7% obtained using the conventional method. In conclusion, although the two methods are comparable in sensitivity, the membrane method had higher specificity, making it a cost-effective procedure for the enhanced isolation of C. jejuni and C. coli from water and animal fecal samples.


Assuntos
Campylobacter coli/isolamento & purificação , Campylobacter jejuni/isolamento & purificação , Técnicas de Cultura/métodos , Fezes/microbiologia , Filtração/métodos , Água Doce/microbiologia , Animais , Campylobacter coli/classificação , Campylobacter coli/crescimento & desenvolvimento , Campylobacter coli/metabolismo , Campylobacter jejuni/classificação , Campylobacter jejuni/crescimento & desenvolvimento , Campylobacter jejuni/metabolismo , Galinhas , Meios de Cultura/metabolismo , Fezes/química , Filtração/economia , Água Doce/análise
18.
J Microbiol Methods ; 79(3): 307-13, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19818368

RESUMO

Campylobacter species contribute to an enormous burden of enteric illnesses around the world. This study compared two different methods for detecting Campylobacter species in surface water samples from agricultural watersheds across Canada. One method was based on membrane filtration (MF) of 500 ml water samples followed by selective microaerophilic enrichment at 42 degrees C in Bolton broth, isolation of Campylobacter on CCDA, and subsequent identification confirmation by a PCR assay. The second method was based on centrifugation (CF) of 1000 ml water samples, followed by selective microaerophilic enrichment at 42 degrees C in Bolton broth, isolation of Campylobacter on Modified Karmali Agar, and subsequent identification confirmation by a different PCR assay. Overall comparison of the CF and MF methods indicated that both methods found Camylobacterjejuni to be the most commonly detected Campylobacter species in 699 water samples from four agricultural watersheds across Canada, and that C. jejuni frequency of occurrence was similar by both methods. However, the CF method detected significantly higher frequencies of Campylobactercoli (17%) and other Campylobacter species (13%) than the MF method (11% and 3%, respectively). It was frequently found that one method would detect Campylobacter in a water sample when the other method would not for a simultaneously collected, duplicate water sample. This study indicates that methods can have significantly different recovery efficiencies for Campylobacter species, and that caution is needed when comparing studies that report on the frequency of occurrence of waterborne Campylobacter at the genus level when different detection methods are used.


Assuntos
Técnicas de Tipagem Bacteriana/métodos , Campylobacter/isolamento & purificação , Água Doce/microbiologia , Microbiologia da Água , Campylobacter/genética , Centrifugação/métodos , Meios de Cultura , Eletroforese em Gel de Ágar , Filtração/métodos , Genes Bacterianos , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA