Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014217

RESUMO

Optical methods for studying the brain offer powerful approaches for understanding how neural activity underlies complex behavior. These methods typically rely on genetically encoded sensors and actuators to monitor and control neural activity. For microendoscopic calcium imaging, injection of a virus followed by implantation of a lens probe is required to express a calcium sensor and enable optical access to the target brain region. This two-step process poses several challenges, chief among them being the risks associated with mistargeting and/or misalignment between virus expression zone, lens probe and target brain region. Here, we engineer an adeno-associated virus (AAV)-eluting polymer coating for gradient refractive index (GRIN) lenses enabling expression of a genetically encoded calcium indicator (GCaMP) directly within the brain region of interest upon implantation of the lens. This approach requires only one surgical step and guarantees alignment between GCaMP expression and lens in the brain. Additionally, the slow virus release from these coatings increases the working time for surgical implantation, expanding the brain regions and species amenable to this approach. These enhanced capabilities should accelerate neuroscience research utilizing optical methods and advance our understanding of the neural circuit mechanisms underlying brain function and behavior in health and disease. Significance Statement: We engineered a polymer coating for gradient refractive index (GRIN) lenses that provides controlled release of adeno-associated viruses (AAVs). This technology enables expression of a genetically encoded calcium indicator (GCaMP) directly at the brain region of interest upon implantation of the lens. Compared to current methods, our coating offers two important improvements. First, it simplifies surgery by combining GCaMP expression and lens placement in one step, saving time and ensuring alignment. Second, controlled release of AAV from these coatings extends the time available for surgery, making it possible to implant lenses in deeper parts of the brain and in more species. These advances accelerate neuroscience research and deepen our understanding of how neural circuits impact both health and disease.

2.
Biomater Sci ; 11(6): 2065-2079, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36723072

RESUMO

Prolonged maintenance of therapeutically-relevant levels of broadly neutralizing antibodies (bnAbs) is necessary to enable passive immunization against infectious disease. Unfortunately, protection only lasts for as long as these bnAbs remain present at a sufficiently high concentration in the body. Poor pharmacokinetics and burdensome administration are two challenges that need to be addressed in order to make pre- and post-exposure prophylaxis with bnAbs feasible and effective. In this work, we develop a supramolecular hydrogel as an injectable, subcutaneous depot to encapsulate and deliver antibody drug cargo. This polymer-nanoparticle (PNP) hydrogel exhibits shear-thinning and self-healing properties that are required for an injectable drug delivery vehicle. In vitro drug release assays and diffusion measurements indicate that the PNP hydrogels prevent burst release and slow the release of encapsulated antibodies. Delivery of bnAbs against SARS-CoV-2 from PNP hydrogels is compared to standard routes of administration in a preclinical mouse model. We develop a multi-compartment model to understand the ability of these subcutaneous depot materials to modulate the pharmacokinetics of released antibodies; the model is extrapolated to explore the requirements needed for novel materials to successfully deliver relevant antibody therapeutics with different pharmacokinetic characteristics.


Assuntos
COVID-19 , Hidrogéis , Camundongos , Animais , Hidrogéis/farmacocinética , SARS-CoV-2 , Anticorpos Amplamente Neutralizantes , Sistemas de Liberação de Medicamentos , Polímeros , Anticorpos
3.
bioRxiv ; 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37577608

RESUMO

Over the past few decades, the development of potent and safe immune-activating adjuvant technologies has become the heart of intensive research in the constant fight against highly mutative and immune evasive viruses such as influenza, SARS-CoV-2, and HIV. Herein, we developed a highly modular saponin-based nanoparticle platform incorporating toll-like receptor agonists (TLRas) including TLR1/2a, TLR4a, TLR7/8a adjuvants and their mixtures. These various TLRa-SNP adjuvant constructs induce unique acute cytokine and immune-signaling profiles, leading to specific Th-responses that could be of interest depending on the target disease for prevention. In a murine vaccine study, the adjuvants greatly improved the potency, durability, breadth, and neutralization of both COVID-19 and HIV vaccine candidates, suggesting the potential broad application of these adjuvant constructs to a range of different antigens. Overall, this work demonstrates a modular TLRa-SNP adjuvant platform which could improve the design of vaccines for and dramatically impact modern vaccine development.

4.
bioRxiv ; 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36778223

RESUMO

Glucagon-like peptide-1 (GLP-1) is an incretin hormone and neurotransmitter secreted from intestinal L-cells in response to nutrients to stimulate insulin and block glucagon secretion in a glucose-dependent manner. GLP-1 in itself is rapidly degraded, but long-acting GLP-1 receptor agonists (GLP-1 RAs) have become central in the treatment of T2D because of the beneficial effects extending also beyond glucose control. Currently, these therapeutics must be injected either daily or weekly or taken daily orally, leaving room for technological innovations that enable less frequent administrations, which will reduce patient burden and increase patient compliance. An ideal GLP-1 RA drug product would provide continuous therapy for upwards of four months from a single administration to match the cadence with which T2D patients typically visit their physician. In this work, we leveraged an injectable hydrogel depot technology to develop a long-acting GLP-1 RA drug product. By modulating the hydrogel properties to tune GLP-1 RA retention within the hydrogel depot, we engineered formulations capable of months-long GLP-1 RA delivery. Using a rat model of T2D, we confirmed that a single injection of hydrogel-based therapies exhibits sustained exposure of GLP-1 RA over 42 days, corresponding to a once-every four month therapy in humans. Moreover, these hydrogel therapies maintained optimal management of blood glucose and weight comparable to daily injections of a leading GLP-1 RA drug molecule. The pharmacokinetics and pharmacodynamics of these hydrogel-based long-acting GLP-1 RA treatments are promising for development of novel therapies reducing treatment burden for more effective management of T2D. Progress and Potential: While insufficient access to quality healthcare is problematic for consistent management of Type II diabetes (T2D), poor adherence to burdensome treatment regimens is one of the greatest challenges for disease management. Glucagon-like peptide 1 (GLP1) drugs have become central to the treatment of T2D due to their many beneficial effects beyond improving glucose control. Unfortunately, while optimization of GLP1 drugs has reduced treatment frequency from daily to weekly, significant patient burden still leads to poor patience compliance. In this work we developed an injectable hydrogel technology to enable GLP1 drugs only requiring administration once every four months. We showed in a rat model of T2D that one injection of a hydrogel-based therapy improves management of blood glucose and weight when compared with daily injections of the leading drug used clinically. These hydrogel-based GLP1 treatments are promising for reducing treatment burden and more effectively managing T2D. Future Impact: A GLP-1-based drug product providing four months of continuous therapy per administration could be transformational for the management of Type II diabetes (T2D). One of the most challenging aspects of diabetes management with GLP-1 mimics is maintenance of consistent levels of the drugs in the body, which is complicated by poor patient compliance on account of the high frequency of dosing required for current treatments. By leveraging a unique sustained release hydrogel depot technology we develop a months-long GLP-1 drug product candidate that has the potential to reduce patient burden and improving diabetes management. Overall, the hydrogel technology we describe here can dramatically reduce the frequency of therapeutic interventions, significantly increasing patient quality of life and reducing complications of diabetes management.Our next steps will focus on optimization of the drug formulations in a swine model of T2D, which is the most advanced and translationally-relevant animal model for these types of therapeutics. The long-term vision for this work is to translate lead candidate drug products towards clinical evaluation, which will also require comprehensive safety evaluation in multiple species and manufacturing our these materials according to Good Manufacturing Practices. The months-long-acting GLP-1 drug product that will come from this work has the potential to afford thus far unrealized therapeutic impact for the hundreds of millions of people with diabetes worldwide.

5.
Cell Rep Med ; 4(11): 101292, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37992687

RESUMO

Glucagon-like peptide-1 (GLP-1) is an incretin hormone and neurotransmitter secreted from intestinal L cells in response to nutrients to stimulate insulin and block glucagon secretion in a glucose-dependent manner. Long-acting GLP-1 receptor agonists (GLP-1 RAs) have become central to treating type 2 diabetes (T2D); however, these therapies are burdensome, as they must be taken daily or weekly. Technological innovations that enable less frequent administrations would reduce patient burden and increase patient compliance. Herein, we leverage an injectable hydrogel depot technology to develop a GLP-1 RA drug product capable of months-long GLP-1 RA delivery. Using a rat model of T2D, we confirm that one injection of hydrogel-based therapy sustains exposure of GLP-1 RA over 42 days, corresponding to a once-every-4-months therapy in humans. Hydrogel therapy maintains management of blood glucose and weight comparable to daily injections of a leading GLP-1 RA drug. This long-acting GLP-1 RA treatment is a promising therapy for more effective T2D management.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Animais , Ratos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hidrogéis/uso terapêutico , Biomimética , Peptídeo 1 Semelhante ao Glucagon
6.
bioRxiv ; 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35665002

RESUMO

Prolonged maintenance of therapeutically-relevant levels of broadly neutralizing antibodies (bnAbs) is necessary to enable passive immunization against infectious disease. Unfortunately, protection only lasts for as long as these bnAbs remain present at a sufficiently high concentration in the body. Poor pharmacokinetics and burdensome administration are two challenges that need to be addressed in order to make pre- and post-exposure prophylaxis with bnAbs feasible and effective. In this work, we develop a supramolecular hydrogel as an injectable, subcutaneous depot to encapsulate and deliver antibody drug cargo. This polymer-nanoparticle (PNP) hydrogel exhibits shear-thinning and self-healing properties that are required for an injectable drug delivery vehicle. In vitro drug release assays and diffusion measurements indicate that the PNP hydrogels prevent burst release and slow the release of encapsulated antibodies. Delivery of bnAbs against SARS-CoV-2 from PNP hydrogels is compared to standard routes of administration in a preclinical mouse model. We develop a multi-compartment model to understand the ability of these subcutaneous depot materials to modulate the pharmacokinetics of released antibodies; the model is extrapolated to explore the requirements needed for novel materials to successfully deliver relevant antibody therapeutics with different pharmacokinetic characteristics.

7.
Sci Adv ; 8(14): eabn8264, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35394838

RESUMO

Adoptive cell therapy (ACT) has proven to be highly effective in treating blood cancers, but traditional approaches to ACT are poorly effective in treating solid tumors observed clinically. Novel delivery methods for therapeutic cells have shown promise for treatment of solid tumors when compared with standard intravenous administration methods, but the few reported approaches leverage biomaterials that are complex to manufacture and have primarily demonstrated applicability following tumor resection or in immune-privileged tissues. Here, we engineer simple-to-implement injectable hydrogels for the controlled co-delivery of CAR-T cells and stimulatory cytokines that improve treatment of solid tumors. The unique architecture of this material simultaneously inhibits passive diffusion of entrapped cytokines and permits active motility of entrapped cells to enable long-term retention, viability, and activation of CAR-T cells. The generation of a transient inflammatory niche following administration affords sustained exposure of CAR-T cells, induces a tumor-reactive CAR-T phenotype, and improves efficacy of treatment.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Citocinas , Humanos , Hidrogéis , Imunoterapia Adotiva/métodos , Neoplasias/patologia , Neoplasias/terapia , Receptores de Antígenos Quiméricos/genética , Linfócitos T/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA