Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(26): 17940-17955, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38809238

RESUMO

Fabricating nanoscale metal carbides is a great challenge due to them having higher Gibbs free energy of formation (ΔG°) values than other metal compounds; additionally, these carbides have harsh calcination conditions, in which metal oxidation is preferred in the atmosphere. Herein, we report oxocarbon-mediated calcination for the predictive synthesis of nanoscale metal carbides. The thermochemical oxocarbon equilibrium of CO-CO2 reactions was utilized to control the selective redox reactions in multiatomic systems of Mo-C-O, contributing to the phase-forming and structuring of Mo compounds. By harnessing the thermodynamically predicted processing window, we controlled a wide range of Mo phases (MoO2, α-MoC1-x, and ß-Mo2C) and nanostructures (nanoparticle, spike, stain, and core/shell) in the Mo compounds/C nanofibers. By inducing simultaneous reactions of C-O (selective C combustion) and Mo-C (Mo carbide formation) in the nanofibers, Mo diffusion was controlled in C nanofibers, acting as a template for the nucleation and growth of Mo carbides and resulting in precise control of the phases and structures of Mo compounds. The formation mechanism of nanostructured Mo carbides was elucidated according to the CO fractions of CO-CO2 calcination. Moreover, tungsten (W) and niobium (Nb) carbides/C nanofibers have been successfully synthesized by CO-CO2 calcination. We constructed the thermodynamic map for the predictive synthesis of transition metal carbides to provide universal guideline via thermochemical oxocarbon equilibrium. We revealed that our thermochemical oxocarbon-mediated gas-solid reaction enabled the structure and phase control of nanoscale transition metal compounds to optimize the material-property relationship accordingly.

2.
Proc Natl Acad Sci U S A ; 116(28): 13807-13815, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31221759

RESUMO

As biological signals are mainly based on ion transport, the differences in signal carriers have become a major issue for the intimate communication between electrical devices and biological areas. In this respect, an ionic device which can directly interpret ionic signals from biological systems needs to be designed. Particularly, it is also required to amplify the ionic signals for effective signal processing, since the amount of ions acquired from biological systems is very small. Here, we report the signal amplification in ionic systems as well as sensing through the modified design of polyelectrolyte hydrogel-based ionic diodes. By designing an open-junction structure, ionic signals from the external environment can be directly transmitted to an ionic diode. Moreover, the minute ionic signals injected into the devices can also be amplified to a large amount of ions. The signal transduction mechanism of the ion-to-ion amplification is suggested and clearly verified by revealing the generation of breakdown ionic currents during an ion injection. Subsequently, various methods for enhancing the amplification are suggested.

3.
Nano Lett ; 19(12): 8644-8652, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31671269

RESUMO

Controlled phase conversion in polymorphic transition metal dichalcogenides (TMDs) provides a new synthetic route for realizing tunable nanomaterials. Most conversion methods from the stable 2H to metastable 1T phase are limited to kinetically slow cation insertion into atomically thin layered TMDs for charge transfer from intercalated ions. Here, we report that anion extraction by the selective reaction between carbon monoxide (CO) and chalcogen atoms enables predictive and scalable TMD polymorph control. Sulfur vacancy, induced by anion extraction, is a key factor in molybdenum disulfide (MoS2) polymorph conversion without cation insertion. Thermodynamic MoS2-CO-CO2 ternary phase diagram offers a processing window for efficient sulfur vacancy formation with precisely controlled MoS2 structures from single layer to multilayer. To utilize our efficient phase conversion, we synthesize vertically stacked 1T-MoS2 layers in carbon nanofibers, which exhibit highly efficient hydrogen evolution reaction catalytic activity. Anion extraction induces the polymorph conversion of tungsten disulfide (WS2) from 2H to 1T. This reveals that our method can be utilized as a general polymorph control platform. The versatility of the gas-solid reaction-based polymorphic control will enable the engineering of metastable phases in 2D TMDs for further applications.

4.
Small ; 10(16): 3397-404, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-24789010

RESUMO

Deformation behavior of the Ag nanowire flexible transparent electrode under bending strain is studied and results in a novel approach for highly reliable Ag nanowire network with mechanically welded junctions. Bending fatigue tests up to 500,000 cycles are used to evaluate the in situ resistance change while imposing fixed, uniform bending strain. In the initial stages of bending cycles, the thermally annealed Ag nanowire networks show a reduction in fractional resistance followed by a transient and steady-state increase at later stages of cycling. SEM analysis reveals that the initial reduction in resistance is caused by mechanical welding as a result of applied bending strain, and the increase in resistance at later stages of cycling is determined to be due to the failure at the thermally locked-in junctions. Based on the observations from this study, a new methodology for highly reliable Ag nanowire network is proposed: formation of Ag nanowire networks with no prior thermal annealing but localized junction formation through simple application of mechanical bending strain. The non-annealed, mechanically welded Ag nanowire network shows significantly enhanced cyclic reliability with essentially 0% increase in resistance due to effective formation of localized wire-to-wire contact.

5.
Nanotechnology ; 25(12): 125706, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24577219

RESUMO

The development of highly conductive metallic electrodes with long-term reliability is in great demand for real industrialization of flexible electronics, which undergo repeated mechanical deformation during service. In the case of vacuum-deposited metallic electrodes, adequate conductivity is provided, but it degrades gradually during cyclic mechanical deformation. Here, we demonstrate a long-term reliable Ag electrode by inkjet printing. The electrical conductivity and the mechanical reliability during cyclic bending are investigated with respect to the nanoporous microstructure caused by post heat treatment, and are compared to those of evaporated Ag films of the same thickness. It is shown that there is an optimized nanoporous microstructure for inkjet-printed Ag films, which provides a high conductivity and improved reliability. It is argued that the nanoporous microstructure ensures connectivity within the particle network and at the same time reduces plastic deformation and the formation of fatigue damage. This concept provides a new guideline to develop an efficient method for highly conductive and reliable metallic electrodes for flexible electronics.

6.
Phys Chem Chem Phys ; 16(7): 3087-94, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24399098

RESUMO

One of the major challenges for the practical application of graphene is the large scale synthesis of uniform films with high quality at lower temperature. Here, we demonstrate the use of Ag-plated Cu substrates in the synthesis of high-quality graphene films via chemical vapor deposition (CVD) of methane gas at temperatures as low as 900 °C. Various experimental analyses show that the plated Ag diffuses into Cu to form a uniform Cu-Ag alloy that suppresses the formation of multilayer nucleation and decreases the activation energy of precursor formation, leading to a lower synthesis temperature with enhanced monolayer coverage. In addition, we also observed an unusual Ag-assisted abnormal grain growth of Cu into the cube texture with larger grain sizes and reduced grain boundaries, which is believed to provide the homogeneous environment needed for uniform graphene growth.

7.
Phys Chem Chem Phys ; 15(6): 2117-24, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23288103

RESUMO

The enhancement of the electrical conductivity by doping is important in hematite (α-Fe(2)O(3)) photoanodes for efficient solar water oxidation. However, in spite of many successful demonstrations using extrinsic dopants, such as Sn, Ti, and Si, the achieved photocurrent is still lower than the practical requirement. There is still lack of our understanding of how intrinsic oxygen defects can change the photocurrent and interact with the extrinsic dopants. In this study, we systematically investigate the interplay of oxygen vacancies and extrinsic Sn dopants in the context of photoanodic properties. As a result, we demonstrate that the controlled generation of oxygen vacancies can activate the photoactivity of pure hematite remarkably and further enhance the Sn doping effects synergistically. Furthermore, the correlated behavior of oxygen vacancies and Sn dopants is closely linked to the variation of electrical conductance and results in the optimum concentration region to show the high photocurrent and low onset voltage.

8.
RSC Adv ; 13(3): 2131-2139, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36712610

RESUMO

The importance of developing a hardmask with excellent performance, and physical and chemical properties to utilize in long-term etching is spotlighted due to the acceleration of development in high-density semiconductors. To develop such a hardmask, amorphous carbon hardmasks doped with various concentrations of N were fabricated with a DC magnetron sputtering system using varying inert gas (Ar to N2) ratios. In contrast to the expectation that doped nitrogen would block the permeation of fluorine and improve the etch resistance, as the nitrogen concentration increased, the selectivity of the doped amorphous carbon films decreased. To understand this degradation with increasing nitrogen concentration, systematic X-ray photoelectron spectroscopy (XPS), radial distribution function (RDF), and X-ray reflectometry (XRR) analyses were conducted. In this study, we found that as the amount of nitrogen increased, the density of the film decreased, and the amount of pyridinic and pyrrolic nitrogen bonds with low formation energy increased. In contrast, based on time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis of etched nitrogen-doped amorphous carbon films, the penetration depth of fluorine ions from the etchant decreased as the amount of nitrogen increased. Therefore, in order to develop an excellent hardmask using amorphous carbon, it is important to increase the density of the film and the nitrogen concentration in the film while lowering the ratio of pyrrolic N to pyridinic N, i.e., increasing the ratio of graphitic N.

9.
ACS Appl Mater Interfaces ; 15(33): 39614-39624, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37556112

RESUMO

Bioelectronic devices that offer real-time measurements, biological signal processing, and continuous monitoring while maintaining stable performance are in high demand. The materials used in organic electrochemical transistors (OECTs) demonstrate high transconductance (GM) and excellent biocompatibility, making them suitable for bioelectronics in a biological environment. However, ion migration in OECTs induces a delayed response time and low cut-off frequency, and the adverse biological environment causes OECT durability problems. Herein, we present OECTs with a faster response time and improved durability, made possible by using a nanofiber mat channel of a conventional OECT structure. Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)/polyacrylamide (PAAm) nanofiber mat channel OECTs are fabricated and subjected to various durability tests for the first time based on continuous measurements and mechanical stability assessments. The results indicate that the nanofiber mat channel OECTs have a faster response time and longer life spans compared to those of film channel OECTs. The improvements can be attributed to the increased surface area and fibrous structure of the nanofiber mat channel. Furthermore, the hydrogel helps to maintain the structure of the nanofiber, facilitates material exchange, and eliminates the need for a crosslinker.

10.
Small ; 8(21): 3300-6, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-22821891

RESUMO

Design and fabrication of reliable electrodes is one of the most important challenges in flexible devices, which undergo repeated deformation. In conventional approaches, mechanical and electrical properties of continuous metal films degrade gradually because of the fatigue damage. The designed incorporation of nanoholes into Cu electrodes can enhance the reliability. In this study, the electrode shows extremely low electrical resistance change during bending fatigue because the nanoholes suppress crack initiation by preventing protrusion formation and damage propagation by crack tip blunting. This concept provides a key guideline for developing fatigue-free flexible electrodes.

11.
Sci Rep ; 12(1): 12291, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853980

RESUMO

With recent rapid increases in Cu resistivity, RC delay has become an important issue again. Co, which has a low electron mean free path, is being studied as beyond Cu metal and is expected to minimize this increase in resistivity. However, extrinsic time-dependent dielectric breakdown has been reported for Co interconnects. Therefore, it is necessary to apply a diffusion barrier, such as the Ta/TaN system, to increase interconnect lifetimes. In addition, an ultrathin diffusion barrier should be formed to occupy as little area as possible. This study provides a thermodynamic design for a self-forming barrier that provides reliability with Co interconnects. Since Cr, Mn, Sn, and Zn dopants exhibited surface diffusion or interfacial stable phases, the model constituted an effective alloy design. In the Co-Cr alloy, Cr diffused into the dielectric interface and reacted with oxygen to provide a self-forming diffusion barrier comprising Cr2O3. In a breakdown voltage test, the Co-Cr alloy showed a breakdown voltage more than 200% higher than that of pure Co. The 1.2 nm ultrathin Cr2O3 self-forming barrier will replace the current bilayer barrier system and contribute greatly to lowering the RC delay. It will realize high-performance Co interconnects with robust reliability in the future.

12.
ACS Appl Mater Interfaces ; 13(2): 2820-2828, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33405507

RESUMO

In this research, we report the rapid and reliable formation of high-performance nanoscale bilayer oxide dielectrics on silicon substrates via low-temperature deep ultraviolet (DUV) photoactivation. The optical analysis of sol-gel aluminum oxide films prepared at various concentrations reveals the processable film thickness with DUV photoactivation and its possible generalization to the formation of various metal oxide films on silicon substrates. The physicochemical and electrical characterizations confirm that DUV photoactivation accelerates the efficient formation of a highly dense aluminum oxide and aluminum silicate bilayer (17 nm) on heavily doped silicon at 150 °C within 5 min owing to the efficient thermal conduction on silicon, resulting in excellent dielectric properties in terms of low leakage current (∼10-8 A/cm2 at 1.0 MV/cm) and high areal capacitance (∼0.4 µF/cm2 at 100 kHz) with narrow statistical distributions. Additionally, the sol-gel bilayer oxide dielectrics are successfully combined with a sol-gel indium-gallium-zinc oxide semiconductor via two successive DUV photoactivation cycles, leading to the efficient fabrication of solution-processed oxide thin-film transistors on silicon substrates with an operational voltage below 0.5 V. We expect that in combination with large-area printing, the bilayer oxide dielectrics are beneficial for large-area solution-based oxide electronics on silicon substrates, while DUV photoactivation can be applied to various types of solution-processed functional metal oxides such as phase-transition memories, ferroelectrics, photocatalysts, charge-transporting interlayers and passivation layers, etc. on silicon substrates.

13.
J Phys Chem Lett ; 12(34): 8430-8439, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34436917

RESUMO

Polymorph conversion of transition metal dichalcogenides (TMDs) offers intriguing material phenomena that can be applied for tuning the intrinsic properties of 2D materials. In general, group VIB TMDs can have thermodynamically stable 2H phases and metastable 1T/T' phases. Herein, we report key principles to apply carbon monoxide (CO)-based gas-solid reactions for a universal polymorph conversion of group VIB TMDs without forming undesirable compounds. We found that the process conditions are strongly dependent on the reaction chemical potential of cations in the TMDs, which can be predicted by thermodynamic calculations, and that polymorphic conversion is triggered by S vacancy (VS) formation. Furthermore, we conducted DFT calculations for the reaction barriers of VS formation and S diffusion to reveal the polymorph conversion mechanism of WS2 and compared it with that of MoS2. We believe that phase engineering 2D materials via thermodynamically designed gas-solid reactions could be functionally used to achieve defect-related nanomaterials.

14.
RSC Adv ; 11(14): 8198-8206, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35423321

RESUMO

The oxygen evolution reaction (OER) is the key reaction in water splitting systems, but compared with the hydrogen evolution reaction (HER), the OER exhibits slow reaction kinetics. In this work, boron doping into nickel-iron layered double hydroxide (NiFe LDH) was evaluated for the enhancement of OER electrocatalytic activity. To fabricate boron-doped NiFe LDH (B:NiFe LDH), gaseous boronization, a gas-solid reaction between boron gas and NiFe LDH, was conducted at a relatively low temperature. Subsequently, catalyst activation was performed through electrochemical oxidation for maximization of boron doping and improved OER performance. As a result, it was possible to obtain a remarkably reduced overpotential of 229 mV at 10 mA cm-2 compared to that of pristine NiFe LDH (315 mV) due to the effect of facile charge-transfer resistance by boron doping and improved active sites by electrochemical oxidation.

15.
ACS Appl Mater Interfaces ; 13(5): 6606-6614, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33496567

RESUMO

In response to the extensive utilization of ionic circuits, including in iontronics and wearable devices, a new method for fabricating a hydrogel-based ionic circuit on a polydimethylsiloxane (PDMS) microchip is reported. Prolonged UV/ozone oxidation combined with proper surface functionalizations and a novel microchip bonding method using thiol-epoxy click reaction enable the robust attachment of the photopolymerized hydrogel to the microchannel surface for eventual operation in electrolytes as an ionic circuit. The stretchable ionic diode constructed on the PDMS microchip shows a superior rectification ratio even under tensile stress and long-term storage stability. Furthermore, the combination of the ionic circuit and unique material properties of PDMS allows us to maximize the versatility and diversify the functionalities of the iontronic device, as demonstrated in a pressure-driven ionic switch and chip-integrated ionic regulator. Its iontronic signal transmission mimicking the excitatory and inhibitory synapses also evinces the potential of the hydrogel-based iontronics on the PDMS microchip as developed toward an aqueous neuromimetic information processor while opening up new opportunities for various bioinspired applications.

16.
Nat Commun ; 12(1): 3765, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155218

RESUMO

For steady electroconversion to value-added chemical products with high efficiency, electrocatalyst reconstruction during electrochemical reactions is a critical issue in catalyst design strategies. Here, we report a reconstruction-immunized catalyst system in which Cu nanoparticles are protected by a quasi-graphitic C shell. This C shell epitaxially grew on Cu with quasi-graphitic bonding via a gas-solid reaction governed by the CO (g) - CO2 (g) - C (s) equilibrium. The quasi-graphitic C shell-coated Cu was stable during the CO2 reduction reaction and provided a platform for rational material design. C2+ product selectivity could be additionally improved by doping p-block elements. These elements modulated the electronic structure of the Cu surface and its binding properties, which can affect the intermediate binding and CO dimerization barrier. B-modified Cu attained a 68.1% Faradaic efficiency for C2H4 at -0.55 V (vs RHE) and a C2H4 cathodic power conversion efficiency of 44.0%. In the case of N-modified Cu, an improved C2+ selectivity of 82.3% at a partial current density of 329.2 mA/cm2 was acquired. Quasi-graphitic C shells, which enable surface stabilization and inner element doping, can realize stable CO2-to-C2H4 conversion over 180 h and allow practical application of electrocatalysts for renewable energy conversion.

17.
RSC Adv ; 11(40): 24702-24708, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35481048

RESUMO

The electrochemical CO2 reduction reaction (CO2RR), which converts CO2 into value-added feedstocks and renewable fuels, has been increasingly studied as a next-generation energy and environmental solution. Here, we report that single-atom metal sites distributed around active materials can enhance the CO2RR performance by controlling the Lewis acidity-based local CO2 concentration. By utilizing the oxidation Gibbs free energy difference between silver (Ag), zinc (Zn), and carbon (C), we can produce Ag nanoparticle-embedded carbon nanofibers (CNFs) where Zn is atomically dispersed by a one-pot, self-forming thermal calcination process. The CO2RR performance of AgZn-CNF was investigated by a flow cell with a gas diffusion electrode (GDE). Compared to Ag-CNFs without Zn species (53% at -0.85 V vs. RHE), the faradaic efficiency (FE) of carbon monoxide (CO) was approximately 20% higher in AgZn-CNF (75% at -0.82 V vs. RHE) with 1 M KOH electrolyte.

18.
Ultramicroscopy ; 231: 113314, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34024663

RESUMO

A novel combination of machine learning algorithms is proposed for the differentiation of distinct spectra in a large electron energy loss spectroscopy spectrum image (EELS-SI) dataset. For clustering of the EEL spectra including similar fine structures in an efficient space, linear and nonlinear dimensionality reduction methods are used to project the EEL spectra onto a low-dimensional space. Then, a density-based clustering algorithm is applied to distinguish the meaningful data clusters. By applying this strategy to various experimental EELS-SI datasets, differentiation of several groups of EEL spectra representing specific fine structures was achieved. It is possible to investigate particular fine structures by averaging all of the spectra in each cluster. Also, the spatial distributions of each cluster in the scanning regions can be observed, which enables investigation of the locations of different fine structures in materials. This method does not require any prior knowledge, i.e., it is a data-driven analysis; therefore, it can be applied to any hyperspectral image.

19.
Adv Sci (Weinh) ; 8(10): 2001544, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34026425

RESUMO

Organic neuromorphic computing/sensing platforms are a promising concept for local monitoring and processing of biological signals in real time. Neuromorphic devices and sensors with low conductance for low power consumption and high conductance for low-impedance sensing are desired. However, it has been a struggle to find materials and fabrication methods that satisfy both of these properties simultaneously in a single substrate. Here, nanofiber channels with a self-formed ion-blocking layer are fabricated to create organic electrochemical transistors (OECTs) that can be tailored to achieve low-power neuromorphic computing and fast-response sensing by transferring different amounts of electrospun nanofibers to each device. With their nanofiber architecture, the OECTs exhibit a low switching energy of 113 fJ and operate within a wide bandwidth (cut-off frequency of 13.5 kHz), opening a new paradigm for energy-efficient neuromorphic computing/sensing platforms in a biological environment without the leakage of personal information.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/métodos , Nanofibras/química , Polímeros/química , Sinapses/fisiologia , Transistores Eletrônicos/normas , Redes Neurais de Computação
20.
Adv Sci (Weinh) ; 8(10): 2004029, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34026449

RESUMO

Biodegradable electronics are disposable green devices whose constituents decompose into harmless byproducts, leaving no residual waste and minimally invasive medical implants requiring no removal surgery. Stretchable and flexible form factors are essential in biointegrated electronic applications for conformal integration with soft and expandable skins, tissues, and organs. Here a fully biodegradable MgZnCa metallic glass (MG) film is proposed for intrinsically stretchable electrodes with a high yield limit exploiting the advantages of amorphous phases with no crystalline defects. The irregular dissolution behavior of this amorphous alloy regarding electrical conductivity and morphology is investigated in aqueous solutions with different ion species. The MgZnCa MG nanofilm shows high elastic strain (≈2.6% in the nano-tensile test) and offers enhanced stretchability (≈115% when combined with serpentine geometry). The fatigue resistance in repeatable stretching also improves owing to the wide range of the elastic strain limit. Electronic components including the capacitor, inductor, diode, and transistor using the MgZnCa MG electrode support its integrability to transient electronic devices. The biodegradable triboelectric nanogenerator of MgZnCa MG operates stably over 50 000 cycles and its fatigue resistant applications in mechanical energy harvesting are verified. In vitro cell toxicity and in vivo inflammation tests demonstrate the biocompatibility in biointegrated use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA