Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nat Immunol ; 24(11): 1879-1889, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37872315

RESUMO

Gastrointestinal fungal dysbiosis is a hallmark of several diseases marked by systemic immune activation. Whether persistent pathobiont colonization during immune alterations and impaired gut barrier function has a durable impact on host immunity is unknown. We found that elevated levels of Candida albicans immunoglobulin G (IgG) antibodies marked patients with severe COVID-19 (sCOVID-19) who had intestinal Candida overgrowth, mycobiota dysbiosis and systemic neutrophilia. Analysis of hematopoietic stem cell progenitors in sCOVID-19 revealed transcriptional changes in antifungal immunity pathways and reprogramming of granulocyte myeloid progenitors (GMPs) for up to a year. Mice colonized with C. albicans patient isolates experienced increased lung neutrophilia and pulmonary NETosis during severe acute respiratory syndrome coronavirus-2 infection, which were partially resolved with antifungal treatment or by interleukin-6 receptor blockade. sCOVID-19 patients treated with tocilizumab experienced sustained reductions in C. albicans IgG antibodies titers and GMP transcriptional changes. These findings suggest that gut fungal pathobionts may contribute to immune activation during inflammatory diseases, offering potential mycobiota-immune therapeutic strategies for sCOVID-19 with prolonged symptoms.


Assuntos
COVID-19 , Micobioma , Humanos , Animais , Camundongos , Antifúngicos , Disbiose , Neutrófilos , Candida albicans , Imunoglobulina G
2.
Annu Rev Immunol ; 30: 531-64, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22224781

RESUMO

The immune system has evolved to mount an effective defense against pathogens and to minimize deleterious immune-mediated inflammation caused by commensal microorganisms, immune responses against self and environmental antigens, and metabolic inflammatory disorders. Regulatory T (Treg) cell-mediated suppression serves as a vital mechanism of negative regulation of immune-mediated inflammation and features prominently in autoimmune and autoinflammatory disorders, allergy, acute and chronic infections, cancer, and metabolic inflammation. The discovery that Foxp3 is the transcription factor that specifies the Treg cell lineage facilitated recent progress in understanding the biology of regulatory T cells. In this review, we discuss cellular and molecular mechanisms in the differentiation and function of these cells.


Assuntos
Linfócitos T Reguladores/imunologia , Animais , Diferenciação Celular , Citocinas/imunologia , Citocinas/metabolismo , Ativação Enzimática , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Homeostase/imunologia , Humanos , Tolerância Imunológica , MicroRNAs/imunologia , MicroRNAs/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/metabolismo , Timo/imunologia , Timo/metabolismo , Transcrição Gênica
3.
Immunol Rev ; 323(1): 197-208, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632868

RESUMO

Innate immune memory endows innate immune cells with antigen independent heightened responsiveness to subsequent challenges. The durability of this response can be mediated by inflammation induced epigenetic and metabolic reprogramming in hematopoietic stem and progenitor cells (HSPCs) that are maintained through differentiation to mature immune progeny. Understanding the mechanisms and extent of trained immunity induction by pathogens and vaccines, such as BCG, in HSPC remains a critical area of exploration with important implications for health and disease. Here we review these concepts and present new analysis to highlight how inflammatory reprogramming of HSPC can potently alter immune tone, including to enhance specific anti-tumor responses. New findings in the field pave the way for novel HSPC targeting therapeutic strategies in cancer and other contexts of immune modulation. Future studies are expected to unravel diverse and extensive effects of infections, vaccines, microbiota, and sterile inflammation on hematopoietic progenitor cells and begin to illuminate the broad spectrum of immunologic tuning that can be established through altering HSPC phenotypes. The purpose of this review is to draw attention to emerging and speculative topics in this field where we posit that focused study of HSPC in the framework of trained immunity holds significant promise.


Assuntos
Reprogramação Celular , Células-Tronco Hematopoéticas , Imunidade Inata , Memória Imunológica , Humanos , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Animais , Diferenciação Celular/imunologia , Epigênese Genética , Inflamação/imunologia , Neoplasias/imunologia , Neoplasias/terapia
5.
Cell ; 150(1): 29-38, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22770213

RESUMO

Regulatory T (Treg) cells, whose differentiation and function are controlled by X chromosome-encoded transcription factor Foxp3, are generated in the thymus (tTreg) and extrathymically (peripheral, pTreg), and their deficiency results in fatal autoimmunity. Here, we demonstrate that a Foxp3 enhancer, conserved noncoding sequence 1 (CNS1), essential for pTreg but dispensable for tTreg cell generation, is present only in placental mammals. CNS1 is largely composed of mammalian-wide interspersed repeats (MIR) that have undergone retrotransposition during early mammalian radiation. During pregnancy, pTreg cells specific to a model paternal alloantigen were generated in a CNS1-dependent manner and accumulated in the placenta. Furthermore, when mated with allogeneic, but not syngeneic, males, CNS1-deficient females showed increased fetal resorption accompanied by increased immune cell infiltration and defective remodeling of spiral arteries. Our results suggest that, during evolution, a CNS1-dependent mechanism of extrathymic differentiation of Treg cells emerged in placental animals to enforce maternal-fetal tolerance.


Assuntos
Tolerância Imunológica , Mamíferos/imunologia , Placenta/citologia , Placenta/imunologia , Gravidez/imunologia , Linfócitos T Reguladores/imunologia , Animais , Elementos Facilitadores Genéticos , Feminino , Feto/imunologia , Fatores de Transcrição Forkhead/genética , Humanos , Masculino , Mamíferos/genética , Camundongos , Gambás
6.
Cell ; 151(1): 153-66, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23021222

RESUMO

Regulatory T (Treg) cells, whose identity and function are defined by the transcription factor Foxp3, are indispensable for immune homeostasis. It is unclear whether Foxp3 exerts its Treg lineage specification function through active modification of the chromatin landscape and establishment of new enhancers or by exploiting a pre-existing enhancer landscape. Analysis of the chromatin accessibility of Foxp3-bound enhancers in Treg and Foxp3-negative T cells showed that Foxp3 was bound overwhelmingly to preaccessible enhancers occupied by its cofactors in precursor cells or a structurally related predecessor. Furthermore, the bulk of Foxp3-bound Treg cell enhancers lacking in Foxp3(-) CD4(+) cells became accessible upon T cell receptor activation prior to Foxp3 expression, and only a small subset associated with several functionally important genes were exclusively Treg cell specific. Thus, in a late cellular differentiation process, Foxp3 defines Treg cell functionality in an "opportunistic" manner by largely exploiting the preformed enhancer network instead of establishing a new enhancer landscape.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Linfócitos T Reguladores/citologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular , Cromatina/metabolismo , Elementos Facilitadores Genéticos , Feminino , Proteína Forkhead Box O1 , Ativação Linfocitária , Camundongos , Organismos Livres de Patógenos Específicos , Linfócitos T Reguladores/metabolismo
7.
Blood ; 143(19): 1937-1952, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38446574

RESUMO

ABSTRACT: In physiological conditions, few circulating hematopoietic stem/progenitor cells (cHSPCs) are present in the peripheral blood, but their contribution to human hematopoiesis remain unsolved. By integrating advanced immunophenotyping, single-cell transcriptional and functional profiling, and integration site (IS) clonal tracking, we unveiled the biological properties and the transcriptional features of human cHSPC subpopulations in relationship to their bone marrow (BM) counterpart. We found that cHSPCs reduced in cell count over aging and are enriched for primitive, lymphoid, and erythroid subpopulations, showing preactivated transcriptional and functional state. Moreover, cHSPCs have low expression of multiple BM-retention molecules but maintain their homing potential after xenotransplantation. By generating a comprehensive human organ-resident HSPC data set based on single-cell RNA sequencing data, we detected organ-specific seeding properties of the distinct trafficking HSPC subpopulations. Notably, circulating multi-lymphoid progenitors are primed for seeding the thymus and actively contribute to T-cell production. Human clonal tracking data from patients receiving gene therapy (GT) also showed that cHSPCs connect distant BM niches and participate in steady-state hematopoietic production, with primitive cHSPCs having the highest recirculation capability to travel in and out of the BM. Finally, in case of hematopoietic impairment, cHSPCs composition reflects the BM-HSPC content and might represent a biomarker of the BM state for clinical and research purposes. Overall, our comprehensive work unveiled fundamental insights into the in vivo dynamics of human HSPC trafficking and its role in sustaining hematopoietic homeostasis. GT patients' clinical trials were registered at ClinicalTrials.gov (NCT01515462 and NCT03837483) and EudraCT (2009-017346-32 and 2018-003842-18).


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Homeostase , Animais , Humanos , Camundongos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Análise de Célula Única
8.
Nature ; 583(7818): 852-857, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32699416

RESUMO

Complex organisms can rapidly induce select genes in response to diverse environmental cues. This regulation occurs in the context of large genomes condensed by histone proteins into chromatin. The sensing of pathogens by macrophages engages conserved signalling pathways and transcription factors to coordinate the induction of inflammatory genes1-3. Enriched integration of histone H3.3, the ancestral histone H3 variant, is a general feature of dynamically regulated chromatin and transcription4-7. However, how chromatin is regulated at induced genes, and what features of H3.3 might enable rapid and high-level transcription, are unknown. The amino terminus of H3.3 contains a unique serine residue (Ser31) that is absent in 'canonical' H3.1 and H3.2. Here we show that this residue, H3.3S31, is phosphorylated (H3.3S31ph) in a stimulation-dependent manner along rapidly induced genes in mouse macrophages. This selective mark of stimulation-responsive genes directly engages the histone methyltransferase SETD2, a component of the active transcription machinery, and 'ejects' the elongation corepressor ZMYND118,9. We propose that features of H3.3 at stimulation-induced genes, including H3.3S31ph, provide preferential access to the transcription apparatus. Our results indicate dedicated mechanisms that enable rapid transcription involving the histone variant H3.3, its phosphorylation, and both the recruitment and the ejection of chromatin regulators.


Assuntos
Histonas/química , Histonas/metabolismo , Transcrição Gênica , Regulação para Cima/genética , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Quinase I-kappa B/química , Quinase I-kappa B/metabolismo , Macrófagos/metabolismo , Masculino , Metilação , Camundongos , Modelos Moleculares , Fosforilação
9.
Immunol Rev ; 300(1): 37-53, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33644906

RESUMO

Complex organisms are able to respond to diverse environmental cues by rapidly inducing specific transcriptional programs comprising a few dozen genes among thousands. The highly complex environment within the nucleus-a crowded milieu containing large genomes tightly condensed with histone proteins in the form of chromatin-makes inducible transcription a challenge for the cell, akin to the proverbial needle in a haystack. The different signaling pathways and transcription factors involved in the transmission of information from the cell surface to the nucleus have been readily explored, but not so much the specific mechanisms employed by the cell to ultimately instruct the chromatin changes necessary for a fast and robust transcription activation. Signaling pathways rely on cascades of protein kinases that, in addition to activating transcription factors can also activate the chromatin template by phosphorylating histone proteins, what we refer to as "signaling-to-chromatin." These pathways appear to be selectively employed and especially critical for driving inducible transcription in macrophages and likely in diverse other immune cell populations. Here, we discuss signaling-to-chromatin pathways with potential relevance in diverse immune cell populations together with chromatin related mechanisms that help to "solve" the needle in a haystack challenge of robust chromatin activation and inducible transcription.


Assuntos
Cromatina , Transdução de Sinais , Histonas/metabolismo , Sistema Imunitário/metabolismo , Fatores de Transcrição/genética
10.
Mol Cell ; 62(5): 681-94, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27259201

RESUMO

Information encoded in DNA is interpreted, modified, and propagated as chromatin. The diversity of inputs encountered by eukaryotic genomes demands a matching capacity for transcriptional outcomes provided by the combinatorial and dynamic nature of epigenetic processes. Advances in genome editing, visualization technology, and genome-wide analyses have revealed unprecedented complexity of chromatin pathways, offering explanations to long-standing questions and presenting new challenges. Here, we review recent findings, exemplified by the emerging understanding of crossregulatory interactions within chromatin, and emphasize the pathologic outcomes of epigenetic misregulation in cancer.


Assuntos
Transformação Celular Neoplásica/genética , Montagem e Desmontagem da Cromatina , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Mutação , Neoplasias/genética , Oncogenes , Animais , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Metilação de DNA , Histonas/metabolismo , Humanos , Metilação , Modelos Moleculares , Neoplasias/metabolismo , Neoplasias/patologia , Conformação de Ácido Nucleico , Fosforilação , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Transcrição Gênica
11.
Mol Cell ; 64(2): 347-361, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27768872

RESUMO

The inflammatory response requires coordinated activation of both transcription factors and chromatin to induce transcription for defense against pathogens and environmental insults. We sought to elucidate the connections between inflammatory signaling pathways and chromatin through genomic footprinting of kinase activity and unbiased identification of prominent histone phosphorylation events. We identified H3 serine 28 phosphorylation (H3S28ph) as the principal stimulation-dependent histone modification and observed its enrichment at induced genes in mouse macrophages stimulated with bacterial lipopolysaccharide. Using pharmacological and genetic approaches, we identified mitogen- and stress-activated protein kinases (MSKs) as primary mediators of H3S28ph in macrophages. Cell-free transcription assays demonstrated that H3S28ph directly promotes p300/CBP-dependent transcription. Further, MSKs can activate both signal-responsive transcription factors and the chromatin template with additive effects on transcription. Specific inhibition of MSKs in macrophages selectively reduced transcription of stimulation-induced genes. Our results suggest that MSKs incorporate upstream signaling inputs and control multiple downstream regulators of inducible transcription.


Assuntos
Proteínas de Ciclo Celular/genética , Cromatina/química , Histonas/genética , Mitose , Modelos Estatísticos , Fatores de Transcrição/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Cromatina/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Retroalimentação Fisiológica , Células HeLa , Histonas/metabolismo , Humanos , Cinética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Imagem Molecular , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Tempo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteína Vermelha Fluorescente
12.
Am J Pathol ; 192(7): 1001-1015, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35469796

RESUMO

Vascular injury is a well-established, disease-modifying factor in acute respiratory distress syndrome (ARDS) pathogenesis. Recently, coronavirus disease 2019 (COVID-19)-induced injury to the vascular compartment has been linked to complement activation, microvascular thrombosis, and dysregulated immune responses. This study sought to assess whether aberrant vascular activation in this prothrombotic context was associated with the induction of necroptotic vascular cell death. To achieve this, proteomic analysis was performed on blood samples from COVID-19 subjects at distinct time points during ARDS pathogenesis (hospitalized at risk, N = 59; ARDS, N = 31; and recovery, N = 12). Assessment of circulating vascular markers in the at-risk cohort revealed a signature of low vascular protein abundance that tracked with low platelet levels and increased mortality. This signature was replicated in the ARDS cohort and correlated with increased plasma angiopoietin 2 levels. COVID-19 ARDS lung autopsy immunostaining confirmed a link between vascular injury (angiopoietin 2) and platelet-rich microthrombi (CD61) and induction of necrotic cell death [phosphorylated mixed lineage kinase domain-like (pMLKL)]. Among recovery subjects, the vascular signature identified patients with poor functional outcomes. Taken together, this vascular injury signature was associated with low platelet levels and increased mortality and can be used to identify ARDS patients most likely to benefit from vascular targeted therapies.


Assuntos
Angiopoietina-2 , COVID-19 , Necroptose , Síndrome do Desconforto Respiratório , Angiopoietina-2/metabolismo , COVID-19/complicações , Humanos , Proteômica , Síndrome do Desconforto Respiratório/virologia
13.
Mol Cell ; 59(3): 502-11, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26212453

RESUMO

Access to high-quality antibodies is a necessity for the study of histones and their posttranslational modifications (PTMs). Here we debut the Histone Antibody Specificity Database (http://www.histoneantibodies.com), an online and expanding resource cataloging the behavior of widely used, commercially available histone antibodies by peptide microarray. This interactive web portal provides a critical resource to the biological research community that routinely uses these antibodies as detection reagents for a wide range of applications.


Assuntos
Anticorpos/metabolismo , Bases de Dados Genéticas , Histonas/metabolismo , Análise Serial de Proteínas/métodos , Especificidade de Anticorpos , Células HeLa , Humanos , Processamento de Proteína Pós-Traducional
14.
Immunol Rev ; 323(1): 5-7, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38628138
16.
Immunity ; 30(5): 616-25, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19464984

RESUMO

Foxp3-expressing regulatory T (Treg) cells suppress pathology mediated by immune responses against self and foreign antigens and commensal microorganisms. Sustained expression of the transcription factor Foxp3, a key distinguishing feature of Treg cells, is required for their differentiation and suppressor function. In addition, Foxp3 expression prevents deviation of Treg cells into effector T cell lineages and confers dependence of Treg cell survival and expansion on growth factors, foremost interleukin-2, provided by activated effector T cells. In this review we discuss Treg cell differentiation and maintenance with a particular emphasis on molecular regulation of Foxp3 expression, arguably a key to mechanistic understanding of biology of regulatory T cells.


Assuntos
Diferenciação Celular/imunologia , Linhagem da Célula , Receptores de Antígenos de Linfócitos T/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Animais , Citocinas/imunologia , Citocinas/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Humanos , Proteínas Quinases/imunologia , Proteínas Quinases/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo , Timo/imunologia
17.
Nature ; 482(7385): 395-9, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22318520

RESUMO

A balance between pro- and anti-inflammatory mechanisms at mucosal interfaces, which are sites of constitutive exposure to microbes and non-microbial foreign substances, allows for efficient protection against pathogens yet prevents adverse inflammatory responses associated with allergy, asthma and intestinal inflammation. Regulatory T (T(reg)) cells prevent systemic and tissue-specific autoimmunity and inflammatory lesions at mucosal interfaces. These cells are generated in the thymus (tT(reg) cells) and in the periphery (induced (i)T(reg) cells), and their dual origin implies a division of labour between tT(reg) and iT(reg) cells in immune homeostasis. Here we show that a highly selective blockage in differentiation of iT(reg) cells in mice did not lead to unprovoked multi-organ autoimmunity, exacerbation of induced tissue-specific autoimmune pathology, or increased pro-inflammatory responses of T helper 1 (T(H)1) and T(H)17 cells. However, mice deficient in iT(reg) cells spontaneously developed pronounced T(H)2-type pathologies at mucosal sites--in the gastrointestinal tract and lungs--with hallmarks of allergic inflammation and asthma. Furthermore, iT(reg)-cell deficiency altered gut microbial communities. These results suggest that whereas T(reg) cells generated in the thymus appear sufficient for control of systemic and tissue-specific autoimmunity, extrathymic differentiation of T(reg) cells affects commensal microbiota composition and serves a distinct, essential function in restraint of allergic-type inflammation at mucosal interfaces.


Assuntos
Imunidade nas Mucosas/imunologia , Inflamação/imunologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Células Th2/imunologia , Animais , Asma/imunologia , Asma/patologia , Diferenciação Celular , Elementos Facilitadores Genéticos/genética , Feminino , Fatores de Transcrição Forkhead/genética , Inflamação/patologia , Intestinos/imunologia , Intestinos/microbiologia , Intestinos/patologia , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos , Especificidade de Órgãos , Estômago/imunologia , Estômago/microbiologia , Estômago/patologia , Timo
18.
Nature ; 463(7282): 808-12, 2010 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-20072126

RESUMO

Immune homeostasis is dependent on tight control over the size of a population of regulatory T (T(reg)) cells capable of suppressing over-exuberant immune responses. The T(reg) cell subset is comprised of cells that commit to the T(reg) lineage by upregulating the transcription factor Foxp3 either in the thymus (tT(reg)) or in the periphery (iT(reg)). Considering a central role for Foxp3 in T(reg) cell differentiation and function, we proposed that conserved non-coding DNA sequence (CNS) elements at the Foxp3 locus encode information defining the size, composition and stability of the T(reg) cell population. Here we describe the function of three Foxp3 CNS elements (CNS1-3) in T(reg) cell fate determination in mice. The pioneer element CNS3, which acts to potently increase the frequency of T(reg) cells generated in the thymus and the periphery, binds c-Rel in in vitro assays. In contrast, CNS1, which contains a TGF-beta-NFAT response element, is superfluous for tT(reg) cell differentiation, but has a prominent role in iT(reg) cell generation in gut-associated lymphoid tissues. CNS2, although dispensable for Foxp3 induction, is required for Foxp3 expression in the progeny of dividing T(reg) cells. Foxp3 binds to CNS2 in a Cbf-beta-Runx1 and CpG DNA demethylation-dependent manner, suggesting that Foxp3 recruitment to this 'cellular memory module' facilitates the heritable maintenance of the active state of the Foxp3 locus and, therefore, T(reg) lineage stability. Together, our studies demonstrate that the composition, size and maintenance of the T(reg) cell population are controlled by Foxp3 CNS elements engaged in response to distinct cell-extrinsic or -intrinsic cues.


Assuntos
Linhagem da Célula/genética , Sequência Conservada/genética , Fatores de Transcrição Forkhead/genética , Sequências Reguladoras de Ácido Nucleico/genética , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/metabolismo , Animais , Diferenciação Celular , Montagem e Desmontagem da Cromatina , Ilhas de CpG/genética , Metilação de DNA , Feminino , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Contagem de Linfócitos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-rel/metabolismo , Elementos de Resposta/genética , Linfócitos T Reguladores/imunologia , Timo/citologia , Timo/imunologia , Timo/metabolismo
19.
bioRxiv ; 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38405750

RESUMO

Macrophages adopt distinct phenotypes in response to environmental cues, with type-2 cytokine interleukin-4 promoting a tissue-repair homeostatic state (M2IL4). Glucocorticoids, widely used anti-inflammatory therapeutics, reportedly impart a similar phenotype (M2GC), but how such disparate pathways may functionally converge is unknown. We show using integrative functional genomics that M2IL4 and M2GC transcriptomes share a striking overlap mirrored by a shift in chromatin landscape in both common and signal-specific gene subsets. This core homeostatic program is enacted by transcriptional effectors KLF4 and the GC receptor, whose genome-wide occupancy and actions are integrated in a stimulus-specific manner by the nuclear receptor cofactor GRIP1. Indeed, many of the M2IL4:M2GC-shared transcriptomic changes were GRIP1-dependent. Consistently, GRIP1 loss attenuated phagocytic activity of both populations in vitro and macrophage tissue-repair properties in the murine colitis model in vivo. These findings provide a mechanistic framework for homeostatic macrophage programming by distinct signals, to better inform anti-inflammatory drug design.

20.
bioRxiv ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38562703

RESUMO

Mycobacterium bovis BCG is the vaccine against tuberculosis and an immunotherapy for bladder cancer. When administered intravenously, BCG reprograms bone marrow hematopoietic stem and progenitor cells (HSPCs), leading to heterologous protection against infections. Whether HSPC-reprogramming contributes to the anti-tumor effects of BCG administered into the bladder is unknown. We demonstrate that BCG administered in the bladder in both mice and humans reprograms HSPCs to amplify myelopoiesis and functionally enhance myeloid cell antigen presentation pathways. Reconstitution of naive mice with HSPCs from bladder BCG-treated mice enhances anti-tumor immunity and tumor control, increases intratumor dendritic cell infiltration, reprograms pro-tumorigenic neutrophils, and synergizes with checkpoint blockade. We conclude that bladder BCG acts systemically, reprogramming HSPC-encoded innate immunity, highlighting the broad potential of modulating HSPC phenotypes to improve tumor immunity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA