Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 93(10): 4666-4675, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33667082

RESUMO

Carbohydrates, such as oligo- and polysaccharides, are highly abundant biopolymers that are involved in numerous processes. The study of their structure and functions is commonly based on a material that is isolated from complex natural sources. However, a more precise analysis requires pure compounds with well-defined structures that can be obtained from chemical or enzymatic syntheses. Novel synthetic strategies have increased the accessibility of larger monodisperse polysaccharides, posing a challenge to the analytical methods used for their molecular characterization. Here, we present wide mass range ultrahigh-resolution matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) as a powerful platform for the analysis of synthetic oligo- and polysaccharides. Synthetic carbohydrates 16-, 64-, 100-, and 151-mers were mass analyzed and characterized by MALDI in-source decay FT-ICR MS. Detection of fragment ions generated from glycosidic bond cleavage (or cross-ring cleavage) provided information of the monosaccharide content and the linkage type, allowing for the corroboration of the carbohydrate compositions and structures.


Assuntos
Carboidratos , Polissacarídeos , Análise de Fourier , Glicosídeos , Íons , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
2.
J Am Chem Soc ; 142(19): 8561-8564, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32338884

RESUMO

Polysaccharides are the most abundant biopolymers on earth that serve various structural and modulatory functions. Pure, completely defined linear and branched polysaccharides are essential to understand carbohydrate structure and function. Polysaccharide isolation provides heterogeneous mixtures, while heroic efforts were required to complete chemical and/or enzymatic syntheses of polysaccharides as long 92-mers. Here, we show that automated glycan assembly (AGA) enables access to a 100-mer polysaccharide via a 201-step synthesis within 188 h. Convergent block coupling of 30- and 31-mer oligosaccharide fragments, prepared by AGA, yielded a multiple-branched 151-mer polymannoside. Quick access to polysaccharides provides the basis for future material science applications of carbohydrates.


Assuntos
Automação , Polissacarídeos/síntese química , Glicosilação , Estrutura Molecular , Polissacarídeos/química
4.
Chem Commun (Camb) ; 49(98): 11497-9, 2013 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-24177789

RESUMO

Biologically essential carbohydrate 6-phosphates, especially trehalose 6-phosphate, can be synthesized easily in excellent overall yields in 2 steps involving minimum protecting group manipulations. We can cleave the diphenylphosphate group for further synthetic objectives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA