Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nature ; 446(7139): 1091-5, 2007 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-17410128

RESUMO

Microglia, brain immune cells, engage in the clearance of dead cells or dangerous debris, which is crucial to the maintenance of brain functions. When a neighbouring cell is injured, microglia move rapidly towards it or extend a process to engulf the injured cell. Because cells release or leak ATP when they are stimulated or injured, extracellular nucleotides are thought to be involved in these events. In fact, ATP triggers a dynamic change in the motility of microglia in vitro and in vivo, a previously unrecognized mechanism underlying microglial chemotaxis; in contrast, microglial phagocytosis has received only limited attention. Here we show that microglia express the metabotropic P2Y6 receptor whose activation by endogenous agonist UDP triggers microglial phagocytosis. UDP facilitated the uptake of microspheres in a P2Y6-receptor-dependent manner, which was mimicked by the leakage of endogenous UDP when hippocampal neurons were damaged by kainic acid in vivo and in vitro. In addition, systemic administration of kainic acid in rats resulted in neuronal cell death in the hippocampal CA1 and CA3 regions, where increases in messenger RNA encoding P2Y6 receptors that colocalized with activated microglia were observed. Thus, the P2Y6 receptor is upregulated when neurons are damaged, and could function as a sensor for phagocytosis by sensing diffusible UDP signals, which is a previously unknown pathophysiological function of P2 receptors in microglia.


Assuntos
Microglia/efeitos dos fármacos , Microglia/imunologia , Fagocitose/efeitos dos fármacos , Receptores Purinérgicos P2/metabolismo , Difosfato de Uridina/farmacologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ácido Caínico/farmacologia , Microglia/citologia , Microglia/metabolismo , Ratos , Uridina/metabolismo , Difosfato de Uridina/metabolismo
2.
Nucl Med Biol ; 36(1): 3-10, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19181263

RESUMO

INTRODUCTION: Bromine-76-radiolabeled analogues of previously reported high-affinity A(3) adenosine receptor (A(3)AR) nucleoside ligands have been prepared as potential radiotracers for positron emission tomography. METHODS: The radiosyntheses were accomplished by oxidative radiobromination on the N(6)-benzyl moiety of trimethyltin precursors. Biodistribution studies of the kinetics of uptake were conducted in awake rats. RESULTS: We prepared an agonist ligand {[(76)Br](1'S,2'R,3'S,4'R,5'S)-4'-{2-chloro-6-[(3-bromophenylmethyl)amino]purin-9-yl}-1'-(methylaminocarbonyl)bicyclo[3.1.0]hexane-2',3'-diol (MRS3581)} in 59% radiochemical yield with a specific activity of 19.5 GBq/micromol and an antagonist ligand {[(76)Br](1'R,2'R,3'S,4'R,5'S)-4'-(6-(3-bromobenzylamino)-2-chloro-9H-purin-9-yl)bicyclo[3.1.0]hexane-2',3'-diol (MRS5147)} in 65% radiochemical yield with a specific activity of 22 GBq/micromol. The resultant products exhibited the expected high affinity (K(i) approximately 0.6 nM) and specific binding at the human A(3)AR in vitro. Biodistribution studies in the rat showed uptake in the organs of excretion and metabolism. The antagonist MRS5147 exhibited increasing uptake in testes, an organ that contains significant quantities of A(3)AR, over a 2-h time course, which suggests the presence of a specific A(3)AR retention mechanism. CONCLUSION: We were able to compare uptake of the [(76)Br]-labeled antagonist MRS5147 to [(76)Br]agonist MRS3581. The antagonist MRS5147 shows increasing uptake in the testes, an A(3)AR-rich tissue, suggesting that this ligand may have promise as a molecular imaging agent.


Assuntos
Radioisótopos de Bromo/química , Nucleosídeos/química , Tomografia por Emissão de Pósitrons/métodos , Receptor A3 de Adenosina/metabolismo , Agonistas do Receptor A3 de Adenosina , Antagonistas do Receptor A3 de Adenosina , Animais , Células CHO , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Humanos , Ligantes , Nucleosídeos/metabolismo , Nucleosídeos/farmacologia , Radioquímica , Ratos , Coloração e Rotulagem , Especificidade por Substrato , Distribuição Tecidual
3.
Bioorg Med Chem Lett ; 19(11): 3002-5, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19419868

RESUMO

Ribose-based nucleoside 5'-diphosphates and triphosphates and related nucleotides were compared in their potency at the P2Y receptors with the corresponding nucleoside 5'-phosphonate derivatives. Phosphonate derivatives of UTP and ATP activated the P2Y(2) receptor but were inactive or weakly active at P2Y(4) receptor. Uridine 5'-(diphospho)phosphonate was approximately as potent at the P2Y(2) receptor as at the UDP-activated P2Y(6) receptor. These results suggest that removal of the 5'-oxygen atom from nucleotide agonist derivatives reduces but does not prevent interaction with the P2Y(2) receptor. Uridine 5'-(phospho)phosphonate as well as the 5'-methylenephosphonate equivalent of UMP were inactive at the P2Y(4) receptor and exhibited maximal effects at the P2Y(2) receptor that were 50% of that of UTP suggesting novel action of these analogues.


Assuntos
Nucleotídeos/síntese química , Agonistas do Receptor Purinérgico P2 , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/síntese química , Difosfato de Adenosina/química , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/síntese química , Trifosfato de Adenosina/química , Linhagem Celular Tumoral , Humanos , Nucleotídeos/química , Receptores Purinérgicos P2/metabolismo , Proteínas Recombinantes/agonistas , Proteínas Recombinantes/metabolismo , Difosfato de Uridina/análogos & derivados , Difosfato de Uridina/síntese química , Difosfato de Uridina/química , Uridina Trifosfato/análogos & derivados , Uridina Trifosfato/síntese química , Uridina Trifosfato/química
4.
Bioorg Med Chem ; 17(14): 5298-311, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19502066

RESUMO

The P2Y(14) receptor, a nucleotide signaling protein, is activated by uridine-5'-diphosphoglucose 1 and other uracil nucleotides. We have determined that the glucose moiety of 1 is the most structurally permissive region for designing analogues of this P2Y(14) agonist. For example, the carboxylate group of uridine-5'-diphosphoglucuronic acid proved to be suitable for flexible substitution by chain extension through an amide linkage. Functionalized congeners containing terminal 2-acylaminoethylamides prepared by this strategy retained P2Y(14) activity, and molecular modeling predicted close proximity of this chain to the second extracellular loop of the receptor. In addition, replacement of glucose with other sugars did not diminish P2Y(14) potency. For example, the [5'']ribose derivative had an EC(50) of 0.24muM. Selective monofluorination of the glucose moiety indicated a role for the 2''- and 6''-hydroxyl groups of 1 in receptor recognition. The beta-glucoside was twofold less potent than the native alpha-isomer, but methylene replacement of the 1''-oxygen abolished activity. Replacement of the ribose ring system with cyclopentyl or rigid bicyclo[3.1.0]hexane groups abolished activity. Uridine-5'-diphosphoglucose also activates the P2Y(2) receptor, but the 2-thio analogue and several of the potent modified-glucose analogues were P2Y(14)-selective.


Assuntos
Agonistas do Receptor Purinérgico P2 , Receptores Purinérgicos P2/metabolismo , Relação Estrutura-Atividade , Nucleotídeos de Uracila/química , Nucleotídeos de Uracila/farmacologia , Uridina Difosfato Glucose/análogos & derivados , Animais , Células COS , Chlorocebus aethiops , Humanos , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Receptores Purinérgicos P2/química , Fosfolipases Tipo C/metabolismo , Nucleotídeos de Uracila/síntese química
5.
Circ Res ; 98(7): 970-6, 2006 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-16543499

RESUMO

The aim of this study was to examine a possible role for extracellular pyrimidines as inotropic factors for the heart. First, nucleotide plasma levels were measured to evaluate whether UTP is released in patients with coronary heart disease. Then, inotropic effects of pyrimidines were examined in isolated mouse cardiomyocytes. Finally, expression of pyrimidine-selective receptors (a subgroup of the P2 receptors) was studied in human and mouse heart, using real time polymerase chain reaction, Western blot, and immunohistochemistry. Venous plasma levels of UTP were increased (57%) in patients with myocardial infarction. In electrically stimulated cardiomyocytes the stable P2Y(2/4) agonist UTPgammaS increased contraction by 52%, similar to beta1-adrenergic stimulation with isoproterenol (65%). The P2Y6-agonist UDPbetaS also increased cardiomyocyte contraction (35%), an effect abolished by the P2Y6-blocker MRS2578. The phospholipase C inhibitor U73122 inhibited both the UDPbetaS and the UTPgammaS-induced inotropic effect, indicating an IP3-mediated effect via P2Y6 receptors. The P2Y14 agonist UDP-glucose was without effect. Quantification of mRNA with real time polymerase chain reaction revealed P2Y2 as the most abundant pyrimidine receptor expressed in cardiomyocytes from man. Presence of P2Y6 receptor mRNA was detected in both species and confirmed at protein level with Western blot and immunohistochemistry in man. In conclusion, UTP levels are increased in humans during myocardial infarction, giving the first evidence for UTP release in man. UTP is a cardiac inotropic factor most likely by activation of P2Y2 receptors in man. For the first time we demonstrate inotropic effects of UDP, mediated by P2Y6 receptors via an IP3-dependent pathway. Thus, the extracellular pyrimidines (UTP and UDP) could be important inotropic factors involved in the development of cardiac disease.


Assuntos
Células Musculares/metabolismo , Infarto do Miocárdio/metabolismo , Receptores Purinérgicos P2/fisiologia , Difosfato de Uridina/metabolismo , Uridina Trifosfato/metabolismo , Idoso , Animais , Anticoagulantes/uso terapêutico , Cardiotônicos/farmacologia , Dor no Peito/tratamento farmacológico , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos , Pessoa de Meia-Idade , Células Musculares/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Receptores Purinérgicos P2/efeitos dos fármacos , Receptores Purinérgicos P2Y2
6.
Bioorg Med Chem Lett ; 18(2): 571-5, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18078749

RESUMO

Analogues of the P2X(7) receptor antagonist KN-62, modified at the piperazine and arylsulfonyl groups, were synthesized and assayed at the human P2X(7) receptor for inhibition of BzATP-induced effects, that is, uptake of a fluorescent dye (ethidium bromide) in stably transfected HEK293 cells and IL-1beta release in differentiated THP-1 cells. Substitution of the arylsulfonyl moiety with a nitro group increased antagonistic potency relative to methyl substitution, such that compound 21 was slightly more potent than KN-62. Substitution with D-tyrosine in 36 and sterically bulky tyrosyl 2,6-dimethyl groups [corrected] in 9 enhanced antagonistic potency.


Assuntos
Antagonistas do Receptor Purinérgico P2 , Tirosina/farmacologia , Linhagem Celular , Humanos , Receptores Purinérgicos P2X7 , Estereoisomerismo , Relação Estrutura-Atividade , Tirosina/química
7.
Bioorg Med Chem ; 16(18): 8546-56, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18752961

RESUMO

We have prepared 50-modified derivatives of adenosine and a corresponding (N)-methanocarba nucleoside series containing a bicyclo[3.1.0]hexane ring system in place of the ribose moiety. The compounds were examined in binding assays at three subtypes of adenosine receptors (ARs) and in functional assays at the A3 AR. The H-bonding ability of a group of 9-riboside derivatives containing a 50-uronamide moiety was reduced by modification of the NH; however these derivatives did not display the desired activity as selective A3 AR antagonists, as occurs with 50-N,N-dimethyluronamides. However, truncated (N)-methanocarba analogues lacking a 40-hydroxymethyl group were highly potent and selective antagonists of the human A3 AR. The compounds were synthesized from D-ribose using a reductive free radical decarboxylation of a 50-carboxy intermediate. A less efficient synthetic approach began with L-ribose, which was similar to the published synthesis of (N)-methanocarba A3AR agonists. Compounds 33b-39b (N6-3-halobenzyl and related arylalkyl derivatives) were potent A3AR antagonists with binding Ki values of 0.7-1.4 nM. In a functional assay of [35S]GTPcS binding, 33b (3-iodobenzyl) completely inhibited stimulation by NECA with a KB of 8.9 nM. Thus, a highly potent and selective series of A3AR antagonists has been described.


Assuntos
Antagonistas do Receptor A3 de Adenosina , Compostos Bicíclicos com Pontes/química , Nucleosídeos/farmacologia , Ribose/química , Algoritmos , Animais , Sítios de Ligação , Células CHO/metabolismo , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Nucleosídeos/síntese química , Ensaio Radioligante , Receptor A3 de Adenosina/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade
8.
Nucleosides Nucleotides Nucleic Acids ; 27(3): 279-91, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18260011

RESUMO

Substitution of the ribose moiety of various nucleosides and nucleotides with the (N)-methanocarba ring system increases the potency and selectivity as ligands at certain subtypes of adenosine and P2 receptors. We have prepared a key intermediate in the synthesis of these derivatives, ethyl (1S,2R,3S,4S,5S)-2,3-O-(isopropylidene)-4-hydroxybicyclo[3.1.0]hexane-carboxylate (15), starting from L-ribose (8) as a readily available, enantiopure building block. L-ribose was converted to the corresponding 5'-iodo derivative (9), which was cleaved reductively with Zn. Improvements were made in subsequent steps corresponding to a published route to biologically important (N)-methanocarba 5'-uronamido nucleosides, and new steps were added to prepare related 5'-nucleotides.


Assuntos
Adenosina/química , Adenosina/metabolismo , Compostos Heterocíclicos com 3 Anéis/síntese química , Nucleosídeos/síntese química , Nucleotídeos/síntese química , Ribose/química , Adenosina Desaminase/metabolismo , Compostos Heterocíclicos com 3 Anéis/química , Ligantes , Nucleosídeos/química , Nucleotídeos/química , Receptores Purinérgicos P2/metabolismo , Estereoisomerismo
9.
J Med Chem ; 50(14): 3229-41, 2007 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-17564423

RESUMO

P2Y1 is an ADP-activated G protein-coupled receptor (GPCR). Its antagonists impede platelet aggregation in vivo and are potential antithrombotic agents. Combining ligand and structure-based modeling we generated a consensus model (LIST-CM) correlating antagonist structures with their potencies. We docked 45 antagonists into our rhodopsin-based human P2Y1 homology model and calculated docking scores and free binding energies with the Linear Interaction Energy (LIE) method in continuum-solvent. The resulting alignment was also used to build QSAR based on CoMFA, CoMSIA, and molecular descriptors. To benefit from the strength of each technique and compensate for their limitations, we generated our LIST-CM with a PLS regression based on the predictions of each methodology. A test set featuring untested substituents was synthesized and assayed in inhibition of 2-MeSADP-stimulated PLC activity and in radioligand binding. LIST-CM outperformed internal and external predictivity of any individual model to predict accurately the potency of 75% of the test set.


Assuntos
Modelos Moleculares , Antagonistas do Receptor Purinérgico P2 , Sítios de Ligação , Cromatografia Líquida de Alta Pressão , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Relação Quantitativa Estrutura-Atividade , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2Y1
10.
Novartis Found Symp ; 276: 58-68; discussion 68-72, 107-12, 275-81, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16805423

RESUMO

Recent work has identified nucleotide agonists selective for P2Y1, P2Y2 and P2Y6 receptors and nucleotide antagonists selective for P2Y1, P2Y12 and P2X1 receptors. Selective non-nucleotide antagonists have been reported for P2Y1, P2Y2, P2Y6, P2Y12, P2Y13, P2X(2/3)/P2X3 and P2X7 receptors. For example, the dinucleotide INS 37217 (Up4dC) potently activates the P2Y2 receptor, and the non-nucleotide antagonist A-317491 is selective for P2X(2/3)/P2X3 receptors. Nucleotide analogues in which the ribose moiety is substituted by a variety of novel ring systems, including conformationally locked moieties, have been synthesized as ligands for P2Y receptors. The focus on conformational factors of the ribose-like moiety allows the inclusion of general modifications that lead to enhanced potency and selectivity. At P2Y1,2,4,11 receptors, there is a preference for the North conformation as indicated with (N)-methanocarba analogues. The P2Y1 antagonist MRS2500 inhibited ADP-induced human platelet aggregation with an IC50 of 0.95 nM. MRS2365, an (N)-methanocarba analogue of 2-MeSADP, displayed potency (EC50) of 0.4nM at the P2Y1 receptor, with >10000-fold selectivity in comparison to P2Y12 and P2Y13 receptors. At P2Y6 receptors there is a dramatic preference for the South conformation. Three-dimensional structures of P2Y receptors have been deduced from structure activity relationships (SAR), mutagenesis and modelling studies. Detailed three-dimensional structures of P2X receptors have not yet been proposed.


Assuntos
Nucleotídeos/química , Agonistas do Receptor Purinérgico P2 , Antagonistas do Receptor Purinérgico P2 , Animais , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Nucleotídeos/metabolismo , Conformação Proteica , Receptores Purinérgicos P2/metabolismo
11.
Crit Care ; 10(2): R65, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16623960

RESUMO

INTRODUCTION: Although activation of A3 adenosine receptors attenuates reperfusion lung injury and associated apoptosis, the signaling pathway that mediates this protection remains unclear. Adenosine agonists activate mitogen-activated protein kinases, and these kinases have been implicated in ischemia/reperfusion injury; the purpose of this study was therefore to determine whether A3 adenosine receptor stimulation with reperfusion modulates expression of the different mitogen-activated protein kinases. In addition, we compared the effect of the A3 adenosine agonist IB-MECA with the newly synthesized, highly selective A3 adenosine receptor agonist MRS3558 on injury in reperfused lung. METHOD: Studies were performed in an in vivo spontaneously breathing cat model, in which the left lower lobe of the lung was isolated and subjected to 2 hours of ischemia and 3 hours of reperfusion. The selective A3 adenosine receptor agonists IB-MECA (0.05 mg/kg, 0.1 mg/kg, or 0.3 mg/kg) and MRS3558 (0.05 mg/kg or 0.1 mg/kg) were administered before reperfusion. RESULTS: Both A3 adenosine receptor agonists administered before reperfusion markedly (P < 0.01) attenuated indices of injury and apoptosis, including the percentage of injured alveoli, wet/dry weight ratio, myeloperoxidase activity, TUNEL (in situ TdT-mediated dUTP nick end labeling)-positive cells, and caspase 3 activity and expression. The more pronounced effects at low doses were observed with MRS3558. Increases in phosphorylated c-Jun amino-terminal protein kinase (JNK), p38, and extracellular signal-regulated kinase (ERK)1/2 levels were observed by the end of reperfusion compared with controls. Pretreatment with the A3 agonists upregulated phosphorylated ERK1/2 levels but did not modify phosphorylated JNK and p38 levels. CONCLUSION: The protective effects of A3 adenosine receptor activation are mediated in part through upregulation of phosphorylated ERK. Also, MRS3558 was found to be more potent than IB-MECA in attenuating reperfusion lung injury. The results suggest not only that enhancement of the ERK pathway may shift the balance between cell death and survival toward cell survival, but also that A3 agonists have potential as an effective therapy for ischemia/reperfusion-induced lung injury.


Assuntos
Pneumopatias/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptor A3 de Adenosina/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Apoptose/fisiologia , Gatos , Pneumopatias/genética , Pneumopatias/patologia , Proteínas Quinases Ativadas por Mitógeno/biossíntese , Proteínas Quinases Ativadas por Mitógeno/genética , Receptor A3 de Adenosina/biossíntese , Receptor A3 de Adenosina/genética , Traumatismo por Reperfusão/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-17067963

RESUMO

Ribose ring-constrained nucleosides and nucleotides to act at cell-surface purine recesptors have been designed and synthesized. At the P2Y1 nucleotide receptor and the A3 adenosine receptor (AR) the North envelope conformation of ribose is highly preferred. We have applied mutagenesis and rhodopsin-based homology modeling to the study of purine receptors and used the structural insights gained to assist in the design of novel ligands. Two subgroups of P2Y receptors have been defined, containing different sets of cationic residues for coordinating the phosphate groups. Modeling/mutagenesis of adenosine receptors has focused on determinants of intrinsic efficacy in adenosine derivatives and on a conserved Trp residue (6.48) which is involved in the activation process. The clinical use of adenosine agonists as cytoprotective agents has been limited by the widespread occurrence of ARs, thus, leading to undesirable side effects of exogenously administered adenosine derivatives. In order to overcome the inherent nonselectivity of activating the native receptors, we have introduced the concept of neoceptors. By this strategy, intended for eventual use in gene therapy, the putative ligand binding site of a G protein-coupled receptor is reengineered for activation by synthetic agonists (neoligands) built to have a structural complementarity. Using a rational design process we have identified neoceptor-neoligand pairs which are pharmacologically orthogonal with respect to the native species.


Assuntos
Nucleosídeos/química , Nucleotídeos/química , Animais , Cátions , Membrana Celular/metabolismo , Terapia Genética/métodos , Humanos , Ligantes , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Purinas/química , Receptor A3 de Adenosina/química , Receptores Purinérgicos P2/química , Receptores Purinérgicos P2Y1 , Ribose/química
13.
Collect Czechoslov Chem Commun ; 71(6): 912-928, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-34815583

RESUMO

9-(ß-D-Ribosfuranosyluronamide)adenine derivatives that are selective agonists and antagonists of the A3 adenosine receptor (AR) have been derivatized as prodrugs for in vivo delivery. The free hydroxy groups at the 2' and 3' positions of the agonists 2-chloro-N 6-(3-iodobenzyl)-9-(N-methyl-(ß-D-ribosfuranosyluronamide)adenine 2b, the corresponding 4'-thio nucleoside 2c, and antagonists 4a and 4b (5'-N,N-dimethylamides related to 2b and 2c, respectively) were derivatized through simple acylation reactions. The prodrug derivatives were tested in radioligand binding assays at ARs and in a functional assay of adenylate cyclase at the A3AR and found to be considerably less active than the parent drugs. The hydrolysis of nucleoside 2',3'-diesters to regenerate the parent compound in the presence of human blood was demonstrated. 2',3'-Dipropionate esters of 2b and 4a were readily cleaved in a two-step reaction to regenerate the parent drug, on a time scale of two hours. The cleavage of a 2',3'-dihexanoate ester occurred at a slower rate. This indicates that the prodrugs are suitable as masked forms of the biologically active A3AR agonists and antagonists for future evaluation in vivo.

14.
Curr Top Med Chem ; 5(13): 1275-95, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16305531

RESUMO

Selective agonists and antagonists for A3 adenosine receptors (ARs) are being explored for the treatment of a variety of disorders, including brain and heart ischemic conditions, cancer, and rheumatoid arthritis. This review covers both the structure activity relationships of nucleoside agonist ligands and selected antagonists acting at this receptor and the routes of synthesis. Highly selective agonists have been designed, using both empirical approaches and a semi-rational approach based on molecular modeling. The prototypical A3 agonists IB-MECA 10 and the more receptor-subtype-selective Cl-IB-MECA 11, both of which have affinity in binding to the receptor of approximately 1 nM, have been used widely as pharmacological probes in the elucidation of the physiological role of this receptor. In addition to the exploration of the effects of structural modification of the adenine and ribose moieties on A3AR affinity, the effects of these structural changes on the intrinsic efficacy have also been studied in a systematic fashion. Key structural features determining A3AR interaction include the N6-benzyl group, 2-position substitution such as halo, substitution of ribose (e.g., the (N)-methanocarba ring system, various 2'- and 3'-substitutions and 4'-thio substitution of oxygen). Conformational studies of the ribose moiety and its equivalents indicate that the ring oxygen is not required and the North (N) ring conformation is preferred in binding to the A3AR. Using these observations, a series of ring constrained (N)-methanocarba 5'-uronamide derivatives was recently reported to be highly selective A3AR agonists, the most notable amongst them was MRS3558 113 having a Ki value in binding to the human A3 receptor of 0.3 nM.


Assuntos
Agonistas do Receptor A3 de Adenosina , Antagonistas do Receptor A3 de Adenosina , Purinas/síntese química , Purinas/farmacologia , Animais , Humanos , Ligantes , Conformação Molecular , Purinas/química , Relação Estrutura-Atividade
15.
J Med Chem ; 48(6): 1745-58, 2005 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-15771421

RESUMO

A series of ring-constrained (N)-methanocarba-5'-uronamide 2,N(6)-disubstituted adenine nucleosides have been synthesized via Mitsunobu condensation of the nucleobase precursor with a pseudosugar ring containing a 5'-ester functionality. Following appropriate functionalization of the adenine ring, the ester group was converted to the 5'-N-methylamide. The compounds, mainly 2-chloro-substituted derivatives, were tested in both binding and functional assays at human adenosine receptors (ARs), and many were found to be highly potent and selective A(3)AR agonists. Selected compounds were compared in binding to the rat A(3)AR to assess their viability for testing in rat disease models. The N(6)-(3-chlorobenzyl) and N(6)-(3-bromobenzyl) analogues displayed K(i) values at the human A(3)AR of 0.29 and 0.38 nM, respectively. Other subnanomolar affinities were observed for the following N(6) derivatives: 2,5-dichlorobenzyl, 5-iodo-2-methoxybenzyl, trans-2-phenyl-1-cyclopropyl, and 2,2-diphenylethyl. Selectivity for the human A(3)AR in comparison to the A(1)AR was the following (fold): the N(6)-(2,2-diphenylethyl) analogue 34 (1900), the N(6)-(2,5-dimethoxybenzyl) analogue 26 (1200), the N(6)-(2,5-dichlorobenzyl) and N(6)-(2-phenyl-1-cyclopropyl) analogues 20 and 33 (1000), and the N(6)-(3-substituted benzyl) analogues 17, 18, 28, and 29 (700-900). Typically, even greater selectivity ratios were obtained in comparison with the A(2A) and A(2B)ARs. The (N)-methanocarba-5'-uronamide analogues were full agonists at the A(3)AR, as indicated by the inhibition of forskolin-stimluated adenylate cyclase at a concentration of 10 microM. The N(6)-(2,2-diphenylethyl) derivative was an A(3)AR agonist in the (N)-methanocarba-5'-uronamide series, although it was an antagonist in the ribose series. Thus, many of the previously known groups that enhance A(3)AR affinity in the 9-riboside series, including those that reduce intrinsic efficacy, may be adapted to the (N)-methanocarba nucleoside series of full agonists.


Assuntos
Adenina/análogos & derivados , Adenina/síntese química , Agonistas do Receptor A3 de Adenosina , Nucleosídeos/síntese química , Adenina/química , Adenina/farmacologia , Animais , Sítios de Ligação , Células CHO , Cricetinae , Cricetulus , AMP Cíclico/biossíntese , Humanos , Modelos Moleculares , Nucleosídeos/química , Nucleosídeos/farmacologia , Ensaio Radioligante , Ratos , Receptor A3 de Adenosina/química , Estereoisomerismo , Relação Estrutura-Atividade
16.
J Med Chem ; 48(26): 8103-7, 2005 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-16366590

RESUMO

Ring-constrained adenosine analogues have been designed to act as dual agonists at tissue-protective A(1) and A(3) adenosine receptors (ARs). 9-Ribosides transformed into the ring-constrained (N)-methanocarba-2-chloro-5'-uronamides consistently lost affinity at A(1)/A(2A)ARs and gained at A(3)AR. Among 9-riboside derivatives, only N(6)-cyclopentyl and 7-norbornyl moieties were extrapolated for mixed A(1)/A(3) selectivity and rat/human A(3)AR equipotency. Consequently, 2 was balanced in affinity and potency at A(1)/A(3)ARs as envisioned and dramatically protected in an intact heart model of global ischemia and reperfusion.


Assuntos
Agonistas do Receptor A1 de Adenosina , Agonistas do Receptor A3 de Adenosina , Adenosina/análogos & derivados , Cardiotônicos/síntese química , Adenosina/síntese química , Adenosina/metabolismo , Adenosina/uso terapêutico , Agonistas do Receptor A2 de Adenosina , Animais , Células CHO , Cricetinae , Desenho de Fármacos , Humanos , Camundongos , Infarto do Miocárdio/prevenção & controle , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptor A3 de Adenosina/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Função Ventricular Esquerda/efeitos dos fármacos
17.
J Med Chem ; 48(26): 8108-11, 2005 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-16366591

RESUMO

Combining molecular dynamics (MD) in a hydrated phospholipid (DOPC) bilayer, a Monte Carlo search, and synthesis of locked nucleotide analogues, we discovered that the Southern conformation of the ribose is preferred for ligand recognition by the P2Y(6) receptor. 2'-Deoxy-(S)-methanocarbaUDP was found to be a full agonist of the receptor and displayed a 10-fold higher potency than that for the corresponding flexible 2'-deoxyUDP. MD results also suggested a conformational change of the second extracellular loop consequent to agonist binding.


Assuntos
Agonistas do Receptor Purinérgico P2 , Difosfato de Uridina/análogos & derivados , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular , Receptores Purinérgicos P2/metabolismo , Células Tumorais Cultivadas , Difosfato de Uridina/metabolismo
18.
FASEB J ; 18(2): 406-8, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14688204

RESUMO

Activation of adenosine A1 or A3 receptors protects heart cells from ischemia-induced injury. The A3 receptor signals via RhoA and phospholipase D (PLD) to induce cardioprotection. The objective of the study was to investigate how RhoA activates PLD to achieve the anti-ischemic effect of adenosine A3 receptors. In an established cardiac myocyte model of preconditioning using the cultured chick embryo heart cells, overexpression of the RhoA-noninteracting PLD1 mutant I870R selectively blocked the A3 agonist (Cl-IBMECA, 10 nM)-induced cardioprotection. I870R caused a significantly higher percentage of cardiac cells killed in A3 agonist-treated than in A1 agonist (CCPA, 10 nM)-treated myocytes (ANOVA and posttest comparison, P<0.01). Consistent with its inhibitory effect on the PLD activity, I870R attenuated the Cl-IBMECA-mediated PLD activation. Cl-IBMECA caused a 41 +/- 15% increase in PLD activity in mock-transfected myocytes (P<0.01, paired t test) while having only a slight stimulatory effect on the PLD activity in I870R-transfected cells. To further test the anti-ischemic role of a direct RhoA-PLD1 interaction, atrial cardiac myocytes were rendered null for native adenosine receptors by treatment with irreversible A1 antagonist m-DITC-XAC and were selectively transfected with the human adenosine A1 or A3 receptor cDNA individually or they were cotransfected with cDNAs encoding either receptor plus I870R. I870R preferentially inhibited the human A3 receptor-mediated protection from ischemia. The RhoA-noninteracting PLD1 mutant caused a significantly higher percentage of cardiac cells killed in myocytes cotransfected with the human A3 receptor than in those cells expressing the human A1 receptor (ANOVA and posttest comparison, P<0.01). The present data provided the first demonstration of a novel physiological role for the direct RhoA-PLD1 interaction, that of potent protection from cardiac ischemia. The study further supported the concept that a divergent signaling mechanism mediates the anti-ischemic effect of adenosine A1 and A3 receptors.


Assuntos
Adenosina/uso terapêutico , Isquemia Miocárdica/tratamento farmacológico , Fosfolipase D/metabolismo , Receptor A3 de Adenosina/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Agonistas do Receptor A1 de Adenosina , Agonistas do Receptor A3 de Adenosina , Animais , Células Cultivadas , Embrião de Galinha , Ativação Enzimática , Expressão Gênica , Humanos , Precondicionamento Isquêmico Miocárdico , Modelos Biológicos , Mutação , Isquemia Miocárdica/enzimologia , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos , Fosfolipase D/genética , Ligação Proteica , Receptor A1 de Adenosina/genética , Receptor A1 de Adenosina/metabolismo , Receptor A3 de Adenosina/genética , Transfecção
19.
Curr Top Med Chem ; 4(8): 805-19, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15078212

RESUMO

In comparison to other classes of cell surface receptors, the medicinal chemistry at P2X (ligand-gated ion channels) and P2Y (G protein-coupled) nucleotide receptors has been relatively slow to develop. Recent effort to design selective agonists and antagonists based on a combination of library screening, empirical modification of known ligands, and rational design have led to the introduction of potent antagonists of the P2X(1) (derivatives of pyridoxal phosphates and suramin), P2X(3)(A-317491), P2X(7) (derivatives of the isoquinoline KN-62), P2Y(1)(nucleotide analogues MRS 2179 and MRS 2279), P2Y(2)(thiouracil derivatives such as AR-C126313), and P2Y(12)(nucleotide/nucleoside analogues AR-C69931X and AZD6140) receptors. A variety of native agonist ligands (ATP, ADP, UTP, UDP, and UDP-glucose) are currently the subject of structural modification efforts to improve selectivity. MRS2365 is a selective agonist for P2Y(1)receptors. The dinucleotide INS 37217 potently activates the P2Y(2)receptor. UTP-gamma-S and UDP-beta-S are selective agonists for P2Y(2)/P2Y(4)and P2Y(6)receptors, respectively. The current knowledge of the structures of P2X and P2Y receptors, is derived mainly from mutagenesis studies. Site-directed mutagenesis has shown that ligand recognition in the human P2Y(1)receptor involves individual residues of both the TMs (3, 5, 6, and 7), as well as EL 2 and 3. The binding of the negatively-charged phosphate moiety is dependent on positively charged lysine and arginine residues near the exofacial side of TMs 3 and 7.


Assuntos
Nucleotídeos de Purina/metabolismo , Receptores Purinérgicos P2/metabolismo , Nucleotídeos de Adenina/farmacologia , Animais , Humanos , Ativação do Canal Iônico , Ligantes , Mutagênese Sítio-Dirigida , Agonistas do Receptor Purinérgico P2 , Antagonistas do Receptor Purinérgico P2 , Nucleotídeos de Uracila/farmacologia
20.
Biochem Pharmacol ; 67(9): 1763-70, 2004 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15081875

RESUMO

The physiological role of the P2Y(6) nucleotide receptor may involve cardiovascular, immune and digestive functions based on the receptor tissue distribution, and selective antagonists for this receptor are lacking. We have synthesized a series of symmetric aryl diisothiocyanate derivatives and examined their ability to inhibit phospholipase C (PLC) activity induced by activation of five subtypes of recombinant P2Y receptors. Several derivatives were more potent at inhibiting action of UDP at both human and rat P2Y(6) receptors expressed in 1321N1 human astrocytes than activation of human P2Y(1), P2Y(2), P2Y(4) and P2Y(11) receptors. The inhibition by diisothiocyanate derivatives of 1,2-diphenylethane (MRS2567) and 1,4-di-(phenylthioureido) butane (MRS2578) was concentration-dependent and insurmountable, with IC(50) values of 126+/-15 nM and 37+/-16 nM (human) and 101+/-27 nM and 98+/-11 nM (rat), respectively. A derivative of 1,4-phenylendiisothiocyanate (MRS2575) inhibited only human but not rat P2Y(6) receptor activity. MRS2567 and MRS2578 at 10microM did not affect the UTP (100nM)-induced responses of cells expressing P2Y(2) and P2Y(4) receptors, nor did they affect the 2-methylthio-ADP (30nM)-induced responses at the P2Y(1) receptor or the ATP (10microM)-induced responses at the P2Y(11) receptor. Other antagonists displayed mixed selectivities. The selective antagonists MRS2567, MRS2575 and MRS2578 (1microM) completely blocked the protection by UDP of cells undergoing TNFalpha-induced apoptosis. Thus, we have identified potent, insurmountable antagonists of P2Y(6) receptors that are selective within the family of PLC-coupled P2Y receptors.


Assuntos
Fosfatos de Inositol/metabolismo , Antagonistas do Receptor Purinérgico P2 , Tiocianatos/farmacologia , Animais , Sítios de Ligação , Células CHO , Cricetinae , Humanos , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Purinérgicos P2 , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA