Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34493582

RESUMO

Global containment of COVID-19 still requires accessible and affordable vaccines for low- and middle-income countries (LMICs). Recently approved vaccines provide needed interventions, albeit at prices that may limit their global access. Subunit vaccines based on recombinant proteins are suited for large-volume microbial manufacturing to yield billions of doses annually, minimizing their manufacturing cost. These types of vaccines are well-established, proven interventions with multiple safe and efficacious commercial examples. Many vaccine candidates of this type for SARS-CoV-2 rely on sequences containing the receptor-binding domain (RBD), which mediates viral entry to cells via ACE2. Here we report an engineered sequence variant of RBD that exhibits high-yield manufacturability, high-affinity binding to ACE2, and enhanced immunogenicity after a single dose in mice compared to the Wuhan-Hu-1 variant used in current vaccines. Antibodies raised against the engineered protein exhibited heterotypic binding to the RBD from two recently reported SARS-CoV-2 variants of concern (501Y.V1/V2). Presentation of the engineered RBD on a designed virus-like particle (VLP) also reduced weight loss in hamsters upon viral challenge.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Engenharia de Proteínas/métodos , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Animais , Anticorpos Antivirais/imunologia , Antígenos Virais , Sítios de Ligação , COVID-19/virologia , Vacinas contra COVID-19/economia , Humanos , Imunogenicidade da Vacina , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Saccharomycetales/metabolismo , Vacinas de Subunidades Antigênicas
2.
Biotechnol Bioeng ; 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36929469

RESUMO

Analytical characterization of proteins is a critical task for developing therapeutics and subunit vaccine candidates. Assessing candidates with a battery of biophysical assays can inform the selection of one that exhibits properties consistent with a given target product profile (TPP). Such assessments, however, require several milligrams of purified protein, and ideal assessments of the physicochemical attributes of the proteins should not include unnatural modifications like peptide tags for purification. Here, we describe a fast two-stage minimal purification process for recombinant proteins secreted by the yeast host Komagataella phaffii from a 20 mL culture supernatant. This method comprises a buffer exchange and filtration with a Q-membrane filter and we demonstrate sufficient removal of key supernatant impurities including host-cell proteins (HCPs) and DNA with yields of 1-2 mg and >60% purity. This degree of purity enables characterizing the resulting proteins using affinity binding, mass spectrometry, and differential scanning calorimetry. We first evaluated this method to purify an engineered SARS-CoV-2 subunit protein antigen and compared the purified protein to a conventional two-step chromatographic process. We then applied this method to compare several SARS-CoV-2 RBD sequences. Finally, we show this simple process can be applied to a range of other proteins, including a single-domain antibody, a rotavirus protein subunit, and a human growth hormone. This simple and fast developability methodology obviates the need for genetic tagging or full chromatographic development when assessing and comparing early-stage protein therapeutics and vaccine candidates produced in K. phaffii.

3.
Biologicals ; 75: 21-28, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34924260

RESUMO

To accelerate the formulation development of live-virus vaccine (LVV) candidates, more rapid approaches to rank-order formulations and estimate their real-time storage stability losses are needed. In this case-study, we utilize new and previously described stability data of a live, rotavirus vaccine candidate (RV3-BB) in three different liquid formulations to model and compare predicted vs. experimental RV3-BB stability profiles. Linear-regression extrapolations of limited real-time (2-8 °C) stability data and Arrhenius modeling of accelerated (15, 25, 37 °C) stability data provided predictions of RV3-BB real-time stability profiles (2-8 °C, 24 months). Good correlations of modeled versus experimental stability data to rank-order the RV3-BB formulations were achieved by employing (1) a high-throughput RT-qPCR assay to measure viral titers, (2) additional assay replicates and stability time-points, and (3) a -80 °C control for each formulation to benchmark results at each stability time-point and temperature. Instead of accumulating two-year, 2-8 °C storage stability data, the same rank-ordering of the three RV3-BB formulations could have been achieved by modeling 37°, 25°, 15° (and 2-8 °C) stability data over 1, 3 and 12 months, respectively. The results of this case-study are discussed in the context of accelerating LVV formulation development by expeditiously identifying stable formulations, estimating their shelf-lives, and determining vaccine vial monitoring (VVM) designations.


Assuntos
Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Anticorpos Antivirais , Estabilidade de Medicamentos , Humanos , Infecções por Rotavirus/prevenção & controle , Vacinas Atenuadas
4.
Biotechnol Bioeng ; 118(4): 1750-1756, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33527346

RESUMO

Nonreplicating rotavirus vaccine (NRRV) candidates are being developed with the aim of serving the needs of developing countries. A significant proportion of the cost of manufacturing such vaccines is the purification in multiple chromatography steps. Crystallization has the potential to reduce purification costs and provide new product storage modality, improved operational flexibility, and reduced facility footprints. This communication describes a systematic approach for the design of the crystallization of an NRRV candidate, VP8 subunit proteins fused to the P2 epitope of tetanus toxin, using first-principles models and preliminary experimental data. The first-principles models are applied to literature data to obtain feasible crystallization conditions and lower bounds for nucleation and growth rates. Crystallization is then performed in a hanging-drop vapor diffusion system, resulting in the nucleation and growth of NRRV crystals. The crystals obtained in a scaled-up evaporative crystallization contain proteins truncated in the P2 region, but have no significant differences with the original samples in terms of antibody binding and overall conformational stability. These results demonstrate the promise of evaporative crystallization of the NRRV.


Assuntos
Vacinas contra Rotavirus/química , Rotavirus/química , Cristalização
5.
Microb Cell Fact ; 20(1): 94, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933073

RESUMO

BACKGROUND: Vaccines comprising recombinant subunit proteins are well-suited to low-cost and high-volume production for global use. The design of manufacturing processes to produce subunit vaccines depends, however, on the inherent biophysical traits presented by an individual antigen of interest. New candidate antigens typically require developing custom processes for each one and may require unique steps to ensure sufficient yields without product-related variants. RESULTS: We describe a holistic approach for the molecular design of recombinant protein antigens-considering both their manufacturability and antigenicity-informed by bioinformatic analyses such as RNA-seq, ribosome profiling, and sequence-based prediction tools. We demonstrate this approach by engineering the product sequences of a trivalent non-replicating rotavirus vaccine (NRRV) candidate to improve titers and mitigate product variants caused by N-terminal truncation, hypermannosylation, and aggregation. The three engineered NRRV antigens retained their original antigenicity and immunogenicity, while their improved manufacturability enabled concomitant production and purification of all three serotypes in a single, end-to-end perfusion-based process using the biotechnical yeast Komagataella phaffii. CONCLUSIONS: This study demonstrates that molecular engineering of subunit antigens using advanced genomic methods can facilitate their manufacturing in continuous production. Such capabilities have potential to lower the cost and volumetric requirements in manufacturing vaccines based on recombinant protein subunits.


Assuntos
Antígenos Virais/genética , Engenharia Genética/métodos , Vacinas contra Rotavirus/genética , Rotavirus/imunologia , Saccharomycetales/genética , Antígenos Virais/imunologia , Biologia Computacional , Genômica/métodos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Rotavirus/genética , Vacinas contra Rotavirus/imunologia , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia
6.
Malar J ; 18(1): 356, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31703583

RESUMO

BACKGROUND: Control and elimination of malaria can be accelerated by transmission-blocking interventions such as vaccines. A surface antigen of Plasmodium falciparum gametocytes, Pfs230, is a leading vaccine target antigen, and has recently progressed to experimental clinical trials. To support vaccine product development, an N-terminal Pfs230 antigen was designed to increase yield, as well as to improve antigen quality, integrity, and homogeneity. METHODS: A scalable baculovirus expression system was used to express the Pfs230D1+ construct (aa 552-731), which was subsequently purified and analysed. Pfs230D1+ was designed to avoid glycosylation and protease digestion, thereby potentially increasing homogeneity and stability. The resulting Pfs230D1+ protein was compared to a previous iteration of the Pfs230 N-terminal domain, Pfs230C1 (aa 443-731), through physiochemical characterization and in vivo analysis. The induction of functional antibody responses was confirmed via the standard membrane feeding assay (SMFA). RESULTS: Pfs230D1+ was produced and purified to an overall yield of 23 mg/L culture supernatant, a twofold yield increase over Pfs230C1. The Pfs230D1+ protein migrated as a single band via SDS-PAGE and was detected by anti-Pfs230C1 monoclonal antibodies. Evaluation by SDS-PAGE, chromatography (size-exclusion and reversed phase) and capillary isoelectric focusing demonstrated the molecule had improved homogeneity in terms of size, conformation, and charge. Intact mass spectrometry confirmed its molecular weight and that it was free of glycosylation, a key difference to the prior Pfs230C1 protein. The correct formation of the two intramolecular disulfide bonds was initially inferred by binding of a conformation specific monoclonal antibody and directly confirmed by LC/MS and peptide mapping. When injected into mice the Pfs230D1+ protein elicited antibodies that demonstrated transmission-reducing activity, via SMFA, comparable to Pfs230C1. CONCLUSION: By elimination of an O-glycosylation site, a potential N-glycosylation site, and two proteolytic cleavage sites, an improved N-terminal Pfs230 fragment was produced, termed D1+, which is non-glycosylated, homogeneous, and biologically active. An intact protein at higher yield than that previously observed for the Pfs230C1 fragment was achieved. The results indicate that Pfs230D1+ protein produced in the baculovirus expression system is an attractive antigen for transmission-blocking vaccine development.


Assuntos
Antígenos de Protozoários/genética , Expressão Gênica/imunologia , Vacinas Antimaláricas/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/genética , Animais , Antígenos de Protozoários/imunologia , Camundongos , Proteínas de Protozoários/imunologia
7.
Anal Chem ; 89(17): 8931-8941, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28753295

RESUMO

A barrier to the use of hydrogen exchange-mass spectrometry (HX-MS) in many contexts, especially analytical characterization of various protein therapeutic candidates, is that differences in temperature, pH, ionic strength, buffering agent, or other additives can alter chemical exchange rates, making HX data gathered under differing solution conditions difficult to compare. Here, we present data demonstrating that HX chemical exchange rates can be substantially altered not only by the well-established variables of temperature and pH but also by additives including arginine, guanidine, methionine, and thiocyanate. To compensate for these additive effects, we have developed an empirical method to correct the hydrogen-exchange data for these differences. First, differences in chemical exchange rates are measured by use of an unstructured reporter peptide, YPI. An empirical chemical exchange correction factor, determined by use of the HX data from the reporter peptide, is then applied to the HX measurements obtained from a protein of interest under different solution conditions. We demonstrate that the correction is experimentally sound through simulation and in a proof-of-concept experiment using unstructured peptides under slow-exchange conditions (pD 4.5 at ambient temperature). To illustrate its utility, we applied the correction to HX-MS excipient screening data collected for a pharmaceutically relevant IgG4 mAb being characterized to determine the effects of different formulations on backbone dynamics.

8.
Mol Pharm ; 13(4): 1317-28, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26942274

RESUMO

The metal-catalyzed oxidation by [Fe(II)(EDTA)](2-)/H2O2 of IgG-1 leads to the site-specific hydrolysis of peptide bonds in the Fc region. The major hydrolytic cleavage occurs between Met428 and His429, consistent with a mechanism reported for the site-specific hydrolysis of parathyroid hormone (1-34) between Met8 and His9 (Mozziconacci, O.; et al. Mol. Pharmaceutics 2013, 10 (2), 739-755). In IgG-1, to a lesser extent, we also observe hydrolysis reactions between Met252 and Ile253. After 2 h of oxidation (at pH 5.8, 37 °C) approximately 5% of the protein is cleaved between Met428 and His429. For comparison, after 2 h of oxidation, the amount of tryptic peptides containing a Met sulfoxide residue represents less than 0.1% of the protein. The effect of this site-specific hydrolysis on the conformational stability and aggregation propensity of the antibody was also examined. No noticeable differences in structural integrity and conformational stability were observed between control and oxidized IgG-1 samples as measured by circular dichroism (CD), fluorescence spectroscopy, and static light scattering (SLS). Small amounts of soluble and insoluble aggregates (3-6%) were, however, observed in the oxidized samples by UV-visible absorbance spectroscopy and size exclusion chromatography (SEC). Over the course of metal-catalyzed oxidation, increasing amounts of fragments were also observed by SEC. An increase in the concentration of subvisible particles was detected by microflow imaging (MFI).


Assuntos
Imunoglobulina G/química , Metais/química , Metionina/química , Catálise , Cromatografia em Gel , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Hidrólise , Oxirredução , Espectrometria de Fluorescência
9.
Infect Immun ; 83(1): 292-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25368115

RESUMO

Shigella spp. are causative agents of bacillary dysentery, a human illness with high global morbidity levels, particularly among elderly and infant populations. Shigella infects via the fecal-oral route, and its virulence is dependent upon a type III secretion system (T3SS). Two components of the exposed needle tip complex of the Shigella T3SS, invasion plasmid antigen D (IpaD) and IpaB, have been identified as broadly protective antigens in the mouse lethal pneumonia model. A recombinant fusion protein (DB fusion) was created by joining the coding sequences of IpaD and IpaB. The DB fusion is coexpressed with IpaB's cognate chaperone, IpgC, for proper recombinant expression. The chaperone can then be removed by using the mild detergents octyl oligooxyethelene (OPOE) or N,N-dimethyldodecylamine N-oxide (LDAO). The DB fusion in OPOE or LDAO was used for biophysical characterization and subsequent construction of an empirical phase diagram (EPD). The EPD showed that the DB fusion in OPOE is most stable at neutral pH below 55 °C. In contrast, the DB fusion in LDAO exhibited remarkable thermal plasticity, since this detergent prevents the loss of secondary and tertiary structures after thermal unfolding at 90 °C, as well as preventing thermally induced aggregation. Moreover, the DB fusion in LDAO induced higher interleukin-17 secretion and provided a higher protective efficacy in a mouse challenge model than did the DB fusion in OPOE. These data indicate that LDAO might introduce plasticity to the protein, promoting thermal resilience and enhanced protective efficacy, which may be important in its use as a subunit vaccine.


Assuntos
Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Vacinas Bacterianas/química , Vacinas Bacterianas/imunologia , Detergentes/química , Animais , Fenômenos Químicos/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Camundongos , Estabilidade Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/imunologia , Temperatura
10.
Biologicals ; 42(5): 237-59, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24996452

RESUMO

Instability of vaccines often emerges as a key challenge during clinical development (lab to clinic) as well as commercial distribution (factory to patient). To yield stable, efficacious vaccine dosage forms for human use, successful formulation strategies must address a combination of interrelated topics including stabilization of antigens, selection of appropriate adjuvants, and development of stability-indicating analytical methods. This review covers key concepts in understanding the causes and mechanisms of vaccine instability including (1) the complex and delicate nature of antigen structures (e.g., viruses, proteins, carbohydrates, protein-carbohydrate conjugates, etc.), (2) use of adjuvants to further enhance immune responses, (3) development of physicochemical and biological assays to assess vaccine integrity and potency, and (4) stabilization strategies to protect vaccine antigens and adjuvants (and their interactions) during storage. Despite these challenges, vaccines can usually be sufficiently stabilized for use as medicines through a combination of formulation approaches combined with maintenance of an efficient cold chain (manufacturing, distribution, storage and administration). Several illustrative case studies are described regarding mechanisms of vaccine instability along with formulation approaches for stabilization within the vaccine cold chain. These include live, attenuated (measles, polio) and inactivated (influenza, polio) viral vaccines as well as recombinant protein (hepatitis B) vaccines.


Assuntos
Química Farmacêutica/métodos , Vacinas/química , Adjuvantes Imunológicos/química , Animais , Antígenos/química , Química Farmacêutica/tendências , Temperatura Baixa , Estabilidade de Medicamentos , Armazenamento de Medicamentos/métodos , Vacinas contra Hepatite B/química , Humanos , Vacinas contra Influenza/química , Vacina contra Sarampo/química , Vacinas contra Poliovirus/química , Vacinas/imunologia , Vacinas/normas
11.
Vaccines (Basel) ; 12(6)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38932309

RESUMO

During the multi-dose formulation development of recombinant vaccine candidates, protein antigens can be destabilized by antimicrobial preservatives (APs). The degradation mechanisms are often poorly understood since available analytical tools are limited due to low protein concentrations and the presence of adjuvants. In this work, we evaluate different analytical approaches to monitor the structural integrity of HPV16 VLPs adsorbed to Alhydrogel™ (AH) in the presence and absence of APs (i.e., destabilizing m-cresol, MC, or non-destabilizing chlorobutanol, CB) under accelerated conditions (pH 7.4, 50 °C). First, in vitro potency losses displayed only modest correlations with the results from two commonly used methods of protein analysis (SDS-PAGE, DSC). Next, results from two alternative analytical approaches provided a better understanding of physicochemical events occurring under these same conditions: (1) competitive ELISA immunoassays with a panel of mAbs against conformational and linear epitopes on HPV16 VLPs and (2) LC-MS peptide mapping to evaluate the accessibility/redox state of the 12 cysteine residues within each L1 protein comprising the HPV16 VLP (i.e., with 360 L1 proteins per VLP, there are 4320 Cys residues per VLP). These methods expand the limited analytical toolset currently available to characterize AH-adsorbed antigens and provide additional insights into the molecular mechanism(s) of AP-induced destabilization of vaccine antigens.

12.
Vaccines (Basel) ; 12(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38932338

RESUMO

Introducing new recombinant protein antigens to existing pediatric combination vaccines is important in improving coverage and affordability, especially in low- and middle-income countries (LMICs). This case-study highlights the analytical and formulation challenges encountered with three recombinant non-replicating rotavirus vaccine (NRRV) antigens (t-NRRV formulated with Alhydrogel® adjuvant, AH) combined with a mock multidose formulation of a pediatric pentavalent vaccine used in LMICs. This complex formulation contained (1) vaccine antigens (i.e., whole-cell pertussis (wP), diphtheria (D), tetanus (T), Haemophilus influenza (Hib), and hepatitis B (HepB), (2) a mixture of aluminum-salt adjuvants (AH and Adju-Phos®, AP), and (3) a preservative (thimerosal, TH). Selective, stability-indicating competitive immunoassays were developed to monitor binding of specific mAbs to each antigen, except wP which required the setup of a mouse immunogenicity assay. Simple mixing led to the desorption of t-NRRV antigens from AH and increased degradation during storage. These deleterious effects were caused by specific antigens, AP, and TH. An AH-only pentavalent formulation mitigated t-NRRV antigen desorption; however, the Hib antigen displayed previously reported AH-induced instability. The same rank-ordering of t-NRRV antigen stability (P[8] > P[4] > P[6]) was observed in mock pentavalent formulations and with various preservatives. The lessons learned are discussed to enable future multidose, combination vaccine formulation development with new vaccine candidates.

13.
J Pharm Sci ; 112(7): 1832-1844, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37040833

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is a common cause for diarrheal infections in children in low- and middle-income countries (LMICs). To date, no ETEC vaccine candidates have been approved. Passive immunization with low-cost, oral formulations of secretory IgA (sIgA) against ETEC is an alternative approach to protect high-risk populations in LMICs. Using a model sIgA monoclonal antibody (anti-LT sIgA2-mAb), the stability profiles of different formulations were assessed during storage and in in vitro digestion models (mimicking in vivo oral delivery). First, by employing various physicochemical techniques and a LT-antigen binding assay, three formulations with varying acid-neutralizing capacity (ANC) were evaluated to stabilize sIgA2-mAb during stress studies (freeze-thaw, agitation, elevated temperature) and during exposure to gastric phase digestion. Next, a low-volume, in vitro intestinal digestion model was developed to screen various additives to stabilize sIgA2-mAb in the intestinal phase. Finally, combinations of high ANC buffers and decoy proteins were assessed to collectively protect sIgA2-mAb during in vitro sequential (stomach to intestine) digestion. Based on the results, we demonstrate the feasibility of low-cost, 'single-vial', liquid formulations of sIgA-mAbs delivered orally after infant feeding for passive immunization, and we suggest future work based on a combination of in vitro and in vivo stability considerations.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Criança , Humanos , Infecções por Escherichia coli/prevenção & controle , Administração Oral , Imunização Passiva , Imunoglobulina A Secretora , Anticorpos Monoclonais , Anticorpos Antibacterianos
14.
Mol Ther Methods Clin Dev ; 30: 103-121, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37746246

RESUMO

Recombinant adeno-associated viruses (rAAVs) are a preferred vector system in clinical gene transfer. A fundamental challenge to formulate and deliver rAAVs as stable and efficacious vaccines is to elucidate interrelationships between the vector's physicochemical properties and biological potency. To this end, we evaluated an rAAV-based coronavirus disease 2019 (COVID-19) vaccine candidate that encodes the Spike antigen (AC3) and is produced by a commercially viable process. First, state-of-the-art analytical techniques were employed to determine key structural attributes of AC3, including primary and higher-order structures, particle size, empty/full capsid ratios, aggregates, and multi-step thermal degradation pathway analysis. Next, several quantitative potency measures for AC3 were implemented, and data were correlated with the physicochemical analyses on thermally stressed and control samples. Results demonstrate links between decreasing AC3 physical stability profiles, in vitro transduction efficiency in a cell-based assay, and, importantly, in vivo immunogenicity in a mouse model. These findings are discussed in the general context of future development of rAAV-based vaccine candidates as well as specifically for the rAAV vaccine application under study.

15.
Vaccine ; 41(44): 6502-6513, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37620203

RESUMO

The development of safe and effective second-generation COVID-19 vaccines to improve affordability and storage stability requirements remains a high priority to expand global coverage. In this report, we describe formulation development and comparability studies with a self-assembled SARS-CoV-2 spike ferritin nanoparticle vaccine antigen (called DCFHP), when produced in two different cell lines and formulated with an aluminum-salt adjuvant (Alhydrogel, AH). Varying levels of phosphate buffer altered the extent and strength of antigen-adjuvant interactions, and these formulations were evaluated for their (1) in vivo performance in mice and (2) in vitro stability profiles. Unadjuvanted DCFHP produced minimal immune responses while AH-adjuvanted formulations elicited greatly enhanced pseudovirus neutralization titers independent of ∼100%, ∼40% or ∼10% of the DCFHP antigen adsorbed to AH. These formulations differed, however, in their in vitro stability properties as determined by biophysical studies and a competitive ELISA for measuring ACE2 receptor binding of AH-bound antigen. Interestingly, after one month of 4°C storage, small increases in antigenicity with concomitant decreases in the ability to desorb the antigen from the AH were observed. Finally, we performed a comparability assessment of DCFHP antigen produced in Expi293 and CHO cells, which displayed expected differences in their N-linked oligosaccharide profiles. Despite consisting of different DCFHP glycoforms, these two preparations were highly similar in their key quality attributes including molecular size, structural integrity, conformational stability, binding to ACE2 receptor and mouse immunogenicity profiles. Taken together, these studies support future preclinical and clinical development of an AH-adjuvanted DCFHP vaccine candidate produced in CHO cells.

16.
J Pharm Sci ; 112(4): 974-984, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36563855

RESUMO

Adenovirus vectors have become an important class of vaccines with the recent approval of Ebola and COVID-19 products. In-process quality attribute data collected during Adenovirus vector manufacturing has focused on particle concentration and infectivity ratios (based on viral genome: cell-based infectivity), and data suggest only a fraction of viral particles present in the final vaccine product are efficacious. To better understand this product heterogeneity, lab-scale preparations of two Adenovirus viral vectors, (Chimpanzee adenovirus (ChAdOx1) and Human adenovirus Type 5 (Ad5), were studied using transmission electron microscopy (TEM). Different adenovirus morphologies were characterized, and the proportion of empty and full viral particles were quantified. These proportions showed a qualitative correlation with the sample's infectivity values. Liquid chromatography-mass spectrometry (LC-MS) peptide mapping was used to identify key adenovirus proteins involved in viral maturation. Using peptide abundance analysis, a ∼5-fold change in L1 52/55k abundance was observed between low-(empty) and high-density (full) fractions taken from CsCl ultracentrifugation preparations of ChAdOx1 virus. The L1 52/55k viral protein is associated with DNA packaging and is cleaved during viral maturation, so it may be a marker for infective particles. TEM and LC-MS peptide mapping are promising higher-resolution analytical characterization tools to help differentiate between relative proportions of empty, non-infectious, and infectious viral particles as part of Adenovirus vector in-process monitoring, and these results are an encouraging initial step to better differentiate between the different product-related impurities.


Assuntos
Adenovírus Humanos , COVID-19 , Humanos , Capsídeo/química , Capsídeo/metabolismo , Proteínas Virais/análise , Adenoviridae/genética , Adenovírus Humanos/genética , Vetores Genéticos
17.
bioRxiv ; 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37066156

RESUMO

The development of safe and effective second-generation COVID-19 vaccines to improve affordability and storage stability requirements remains a high priority to expand global coverage. In this report, we describe formulation development and comparability studies with a self-assembled SARS-CoV-2 spike ferritin nanoparticle vaccine antigen (called DCFHP), when produced in two different cell lines and formulated with an aluminum-salt adjuvant (Alhydrogel, AH). Varying levels of phosphate buffer altered the extent and strength of antigen-adjuvant interactions, and these formulations were evaluated for their (1) in vivo performance in mice and (2) in vitro stability profiles. Unadjuvanted DCFHP produced minimal immune responses while AH-adjuvanted formulations elicited greatly enhanced pseudovirus neutralization titers independent of ∼100%, ∼40% or ∼10% of the DCFHP antigen adsorbed to AH. These formulations differed, however, in their in vitro stability properties as determined by biophysical studies and a competitive ELISA for measuring ACE2 receptor binding of AH-bound antigen. Interestingly, after one month of 4°C storage, small increases in antigenicity with concomitant decreases in the ability to desorb the antigen from the AH were observed. Finally, we performed a comparability assessment of DCFHP antigen produced in Expi293 and CHO cells, which displayed expected differences in their N-linked oligosaccharide profiles. Despite consisting of different DCFHP glycoforms, these two preparations were highly similar in their key quality attributes including molecular size, structural integrity, conformational stability, binding to ACE2 receptor and mouse immunogenicity profiles. Taken together, these studies support future preclinical and clinical development of an AH-adjuvanted DCFHP vaccine candidate produced in CHO cells.

18.
Vaccines (Basel) ; 11(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37376419

RESUMO

Aluminum-salt vaccine adjuvants (alum) are commercially available as micron-sized particles with varying chemical composition and crystallinity. There are reports of enhanced adjuvanticity when the alum's particle size is reduced to the nanometer range. Previously, we demonstrated that a recombinant receptor-binding domain (RBD)-based COVID-19 vaccine candidate (RBD-J; RBD-L452K-F490W) formulated with aluminum hydroxide (Alhydrogel®; AH) and CpG 1018™ (CpG) adjuvants induced potent neutralizing antibody responses in mice yet displayed instability during storage. In this work, we evaluated whether sonication of AH to the nanometer size range (nanoAH) could further enhance immunogenicity or improve storage stability of the above formulation. The addition of CpG to nanoAH (at mouse doses), however, caused re-agglomeration of nanoAH. AH-CpG interactions were evaluated by Langmuir binding isotherms and zeta potential measurements, and stabilized nanoAH + CpG formulations of RBD-J were then designed by (1) optimizing CpG:Aluminum dose ratios or (2) adding a small-molecule polyanion (phytic acid, PA). Compared with the micron-sized AH + CpG formulation, the two stabilized nanoAH + CpG formulations of RBD-J demonstrated no enhancement in SARS-CoV-2 pseudovirus neutralizing titers in mice, but the PA-containing nanoAH + CpG formulation showed improved RBD-J storage stability trends (at 4, 25, and 37 °C). The formulation protocols presented herein can be employed to evaluate the potential benefits of the nanoAH + CpG adjuvant combination with other vaccine antigens in different animal models.

19.
Hum Vaccin Immunother ; 19(2): 2264594, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37932241

RESUMO

Second-generation COVID-19 vaccines with improved immunogenicity (e.g., breadth, duration) and availability (e.g., lower costs, refrigerator stable) are needed to enhance global coverage. In this work, we formulated a clinical-stage SARS-CoV-2 receptor-binding domain (RBD) virus-like particle (VLP) vaccine candidate (IVX-411) with widely available adjuvants. Specifically, we assessed the in vitro storage stability and in vivo mouse immunogenicity of IVX-411 formulated with aluminum-salt adjuvants (Alhydrogel™, AH and Adjuphos™, AP), without or with the TLR-9 agonist CpG-1018™ (CpG), and compared these profiles to IVX-411 adjuvanted with an oil-in-water nano-emulsion (AddaVax™, AV). Although IVX-411 bound both AH and AP, lower binding strength of antigen to AP was observed by Langmuir binding isotherms. Interestingly, AH- and AP-adsorbed IVX-411 had similar storage stability profiles as measured by antigen-binding assays (competitive ELISAs), but the latter displayed higher pseudovirus neutralizing titers (pNT) in mice, at levels comparable to titers elicited by AV-adjuvanted IVX-411. CpG addition to alum (AP or AH) resulted in a marginal trend of improved pNTs in stressed samples only, yet did not impact the storage stability profiles of IVX-411. In contrast, previous work with AH-formulations of a monomeric RBD antigen showed greatly improved immunogenicity and decreased stability upon CpG addition to alum. At elevated temperatures (25, 37°C), IVX-411 formulated with AH or AP displayed decreased in vitro stability compared to AV-formulated IVX-411and this rank-ordering correlated with in vivo performance (mouse pNT values). This case study highlights the importance of characterizing antigen-adjuvant interactions to develop low cost, aluminum-salt adjuvanted recombinant subunit vaccine candidates.


Assuntos
COVID-19 , Vacinas de Partículas Semelhantes a Vírus , Camundongos , Animais , Humanos , Alumínio , SARS-CoV-2 , Vacinas contra COVID-19 , Emulsões , Adjuvantes Imunológicos/química , Vacinas Sintéticas , Anticorpos Antivirais , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus
20.
J Pharm Sci ; 112(2): 458-470, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36462710

RESUMO

This work describes Part 2 of multi-dose formulation development of a Human Papillomavirus (HPV) Virus-Like Particle (VLP) based vaccine (see Part 1 in companion paper). Storage stability studies with candidate multi-dose formulations containing individual or combinations of seven different antimicrobial preservatives (APs) were performed with quadrivalent HPV VLP (6, 11, 16, 18) antigens adsorbed to aluminum-salt adjuvant (Alhydrogel®). Real-time (up to two years, 2-8°C) and accelerated (months at 25 and 40°C) stability studies identified eight lead candidates as measured by antigen stability (competitive ELISA employing conformational serotype-specific mAbs), antimicrobial effectiveness (modified European Pharmacopeia assay), total protein content (SDS-PAGE), and AP concentration (RP-UHPLC). The AH-adsorbed HPV18 VLP component was most sensitive to AP-induced destabilization. Optimal quadrivalent antigen storage stability while maintaining antimicrobial effectiveness was observed with 2-phenoxyethanol, benzyl alcohol, chlorobutanol, and 2-phenoxyethanol + benzyl alcohol combination. Interestingly, for single-AP containing multi-dose formulations, this rank-ordering of storage stability did not correlate with previously reported biophysical measurements of AP-induced antigen destabilization. Moreover, other APs (e.g., m-cresol, phenol, parabens) described by others for inclusion in multi-dose HPV VLP formulations showed suboptimal stability. These results suggest that each HPV VLP vaccine candidate (e.g., different serotypes, expression systems, processes, adjuvants) will require customized multi-dose formulation development.


Assuntos
Anti-Infecciosos , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Humanos , Papillomavirus Humano , Anticorpos Antivirais , Infecções por Papillomavirus/prevenção & controle , Conservantes Farmacêuticos , Adjuvantes Imunológicos , Álcoois Benzílicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA