Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Am J Hum Genet ; 110(10): 1787-1803, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37751738

RESUMO

Congenital diaphragmatic hernia (CDH) is a relatively common and genetically heterogeneous structural birth defect associated with high mortality and morbidity. We describe eight unrelated families with an X-linked condition characterized by diaphragm defects, variable anterior body-wall anomalies, and/or facial dysmorphism. Using linkage analysis and exome or genome sequencing, we found that missense variants in plastin 3 (PLS3), a gene encoding an actin bundling protein, co-segregate with disease in all families. Loss-of-function variants in PLS3 have been previously associated with X-linked osteoporosis (MIM: 300910), so we used in silico protein modeling and a mouse model to address these seemingly disparate clinical phenotypes. The missense variants in individuals with CDH are located within the actin-binding domains of the protein but are not predicted to affect protein structure, whereas the variants in individuals with osteoporosis are predicted to result in loss of function. A mouse knockin model of a variant identified in one of the CDH-affected families, c.1497G>C (p.Trp499Cys), shows partial perinatal lethality and recapitulates the key findings of the human phenotype, including diaphragm and abdominal-wall defects. Both the mouse model and one adult human male with a CDH-associated PLS3 variant were observed to have increased rather than decreased bone mineral density. Together, these clinical and functional data in humans and mice reveal that specific missense variants affecting the actin-binding domains of PLS3 might have a gain-of-function effect and cause a Mendelian congenital disorder.


Assuntos
Hérnias Diafragmáticas Congênitas , Osteoporose , Adulto , Humanos , Masculino , Animais , Camundongos , Hérnias Diafragmáticas Congênitas/genética , Actinas/genética , Mutação de Sentido Incorreto/genética , Osteoporose/genética
2.
J Assist Reprod Genet ; 41(6): 1499-1505, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38775994

RESUMO

In this study, we investigated the role of a newly identified homozygous variant (c.1245 + 6T > C) in the CFAP61 gene in the development of multiple morphologically abnormal flagella (MMAF) in an infertile patient. Using exome sequencing, we identified this variant, which led to exon 12 skipping and the production of a truncated CFAP61 protein. Transmission electron microscopy analysis of the patient's spermatozoa revealed various flagellar abnormalities, including defective nuclear chromatin condensation, axoneme disorganization, and mitochondria embedded in residual cytoplasmic droplets. Despite a fertilization rate of 83.3% through ICSI, there was no successful pregnancy due to poor embryo quality.Our findings suggest a link between the identified CFAP61 variant and MMAF, indicating potential disruption in radial spokes' assembly or function crucial for normal ciliary motility. Furthermore, nearly half of the observed sperm heads displayed chromatin condensation defects, possibly contributing to the low blastulation rate. This case underscores the significance of genetic counseling and testing, particularly for couples dealing with infertility and MMAF. Early identification of such genetic variants can guide appropriate interventions and improve reproductive outcomes.


Assuntos
Homozigoto , Infertilidade Masculina , Humanos , Masculino , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Feminino , Adulto , Espermatozoides/patologia , Espermatozoides/ultraestrutura , Cauda do Espermatozoide/patologia , Cauda do Espermatozoide/ultraestrutura , Gravidez , Flagelos/genética , Flagelos/ultraestrutura , Injeções de Esperma Intracitoplásmicas , Sequenciamento do Exoma , Splicing de RNA/genética
3.
Genet Med ; 24(8): 1708-1721, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35583550

RESUMO

PURPOSE: LEF1 encodes a transcription factor acting downstream of the WNT-ß-catenin signaling pathway. It was recently suspected as a candidate for ectodermal dysplasia in 2 individuals carrying 4q35 microdeletions. We report on 12 individuals harboring LEF1 variants. METHODS: High-throughput sequencing was employed to delineate the genetic underpinnings of the disease. Cellular consequences were characterized by immunofluorescence, immunoblotting, pulldown assays, and/or RNA sequencing. RESULTS: Monoallelic variants in LEF1 were detected in 11 affected individuals from 4 unrelated families, and a biallelic variant was detected in an affected individual from a consanguineous family. The phenotypic spectrum includes various limb malformations, such as radial ray defects, polydactyly or split hand/foot, and ectodermal dysplasia. Depending on the type and location of LEF1 variants, the inheritance of this novel Mendelian condition can be either autosomal dominant or recessive. Our functional data indicate that 2 molecular mechanisms are at play: haploinsufficiency or loss of DNA binding are responsible for a mild to moderate phenotype, whereas loss of ß-catenin binding caused by biallelic variants is associated with a severe phenotype. Transcriptomic studies reveal an alteration of WNT signaling. CONCLUSION: Our findings establish mono- and biallelic variants in LEF1 as a cause for a novel syndrome comprising limb malformations and ectodermal dysplasia.


Assuntos
Displasia Ectodérmica , Fator 1 de Ligação ao Facilitador Linfoide/genética , Via de Sinalização Wnt , Consanguinidade , Displasia Ectodérmica/genética , Humanos , Deformidades Congênitas dos Membros , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Síndrome , beta Catenina/genética , beta Catenina/metabolismo
4.
Hum Mutat ; 41(1): 222-239, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31502745

RESUMO

Congenital limb malformations (CLM) comprise many conditions affecting limbs and more than 150 associated genes have been reported. Due to this large heterogeneity, a high proportion of patients remains without a molecular diagnosis. In the last two decades, advances in high throughput sequencing have allowed new methodological strategies in clinical practice. Herein, we report the screening of 52 genes/regulatory sequences by multiplex high-throughput targeted sequencing, in a series of 352 patients affected with various CLM, over a 3-year period of time. Patients underwent a clinical triage by expert geneticists in CLM. A definitive diagnosis was achieved in 35.2% of patients, the yield varying considerably, depending on the phenotype. We identified 112 single nucleotide variants and 26 copy-number variations, of which 52 are novel pathogenic or likely pathogenic variants. In 6% of patients, variants of uncertain significance have been found in good candidate genes. We showed that multiplex targeted high-throughput sequencing works as an efficient and cost-effective tool in clinical practice for molecular diagnosis of congenital limb malformations. Careful clinical evaluation of patients may maximize the yield of CLM panel testing.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Deformidades Congênitas dos Membros/diagnóstico , Deformidades Congênitas dos Membros/genética , Alelos , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética/métodos , Humanos , Masculino , Mutação , Fenótipo , Radiografia , Reação em Cadeia da Polimerase em Tempo Real
5.
Hum Mutat ; 41(7): 1220-1225, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32227665

RESUMO

Thrombocytopenia-absent radius (TAR) syndrome is characterized by radial defect and neonatal thrombocytopenia. It is caused by biallelic variants of RBM8A gene (1q21.1) with the association of a null allele and a hypomorphic noncoding variant. RBM8A encodes Y14, a core protein of the exon junction complex involved in messenger RNA maturation. To date, only two hypomorphic variants have been identified. We report on a cohort of 26 patients affected with TAR syndrome and carrying biallelic variants in RBM8A. Half patients carried a 1q21.1 deletion and one of the two known hypomorphic variants. Four novel noncoding variants of RBM8A were identified in the remaining patients. We developed experimental models enabling their functional characterization in vitro. Two variants, located respectively in the 5'-untranslated region (5'-UTR) and 3'-UTR regions, are responsible for a diminished expression whereas two intronic variants alter splicing. Our results bring new insights into the molecular knowledge of TAR syndrome and enabled us to propose genetic counseling for patients' families.


Assuntos
Síndrome Congênita de Insuficiência da Medula Óssea/genética , Proteínas de Ligação a RNA/genética , Trombocitopenia/genética , Deformidades Congênitas das Extremidades Superiores/genética , Regiões 5' não Traduzidas , Adolescente , Adulto , Criança , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 1 , Estudos de Coortes , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Rádio (Anatomia)/patologia , Adulto Jovem
6.
Am J Med Genet A ; 179(7): 1351-1356, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31050392

RESUMO

Split-hand/foot malformation (SHFM) is a genetically heterogeneous congenital limb malformation typically limited to a defect of the central rays of the autopod, presenting as a median cleft of hands and feet. It can be associated with long bone deficiency or included in more complex syndromes. Among the numerous genetic causes, WNT10B homozygous variants have been recently identified in consanguineous families, but remain still rarely described (SHFM6; MIM225300). We report on three novel SHFM families harboring WNT10B variants and review the literature, allowing us to highlight some clinical findings. The feet are more severely affected than the hands and there is a frequent asymmetry without obvious side-bias. Syndactyly of third-fourth fingers was a frequent finding (62%). Polydactyly, which was classically described in SHFM6, was only present in 27% of patients. No genotype-phenotype correlation is delineated but heterozygous individuals might have mild features of SHFM, suggesting a dose-effect of the WNT10B loss-of-function.


Assuntos
Deformidades Congênitas dos Membros/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Wnt/genética , Feminino , Humanos , Masculino , Linhagem
7.
Genet Med ; 19(9): 1013-1021, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28301459

RESUMO

PURPOSE: Blepharocheilodontic (BCD) syndrome is a rare autosomal dominant condition characterized by eyelid malformations, cleft lip/palate, and ectodermal dysplasia. The molecular basis of BCD syndrome remains unknown. METHODS: We recruited 11 patients from 8 families and performed exome sequencing for 5 families with de novo BCD syndrome cases and targeted Sanger sequencing in the 3 remaining families. RESULTS: We identified five CDH1 heterozygous missense mutations and three CTNND1 heterozygous truncating mutations leading to loss-of-function or haploinsufficiency. Establishment of detailed genotype-phenotype correlations was not possible because of the size of the cohort; however, the phenotype seems to appear more severe in case of CDH1 mutations. Functional analysis of CDH1 mutations confirmed their deleterious impact and suggested accelerated E-cadherin degradation. CONCLUSION: Mutations in CDH1 encoding the E-cadherin were previously reported in hereditary diffuse gastric cancer as well as in nonsyndromic cleft lip/palate. Mutations in CTNND1 have never been reported before. The encoded protein, p120ctn, prevents E-cadherin endocytosis and stabilizes its localization at the cell surface. Conditional deletion of Cdh1 and Ctnnd1 in various animal models induces features reminiscent of BCD syndrome and underlines critical role of the E-cadherin-p120ctn interaction in eyelid, craniofacial, and tooth development. Our data assert BCD syndrome as a CDH1 pathway-related disorder due to mutations in CDH1 and CTNND1 and widen the phenotypic spectrum of E-cadherin anomalies.Genet Med advance online publication 09 March 2017.


Assuntos
Caderinas/genética , Cateninas/genética , Fenda Labial/diagnóstico , Fenda Labial/genética , Fissura Palatina/diagnóstico , Fissura Palatina/genética , Ectrópio/diagnóstico , Ectrópio/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação , Anormalidades Dentárias/diagnóstico , Anormalidades Dentárias/genética , Antígenos CD , Caderinas/química , Caderinas/metabolismo , Cateninas/química , Cateninas/metabolismo , Linhagem Celular , Fenda Labial/metabolismo , Fissura Palatina/metabolismo , Biologia Computacional , Análise Mutacional de DNA , Ectrópio/metabolismo , Éxons , Fácies , Feminino , Expressão Gênica , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Modelos Moleculares , Linhagem , Fenótipo , Conformação Proteica , Transporte Proteico , Anormalidades Dentárias/metabolismo , delta Catenina
8.
J Med Genet ; 49(12): 737-46, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23188108

RESUMO

BACKGROUND: Oesophageal atresia (OA) and mandibulofacial dysostosis (MFD) are two congenital malformations for which the molecular bases of syndromic forms are being identified at a rapid rate. In particular, the EFTUD2 gene encoding a protein of the spliceosome complex has been found mutated in patients with MFD and microcephaly (MIM610536). Until now, no syndrome featuring both MFD and OA has been clearly delineated. RESULTS: We report on 10 cases presenting with MFD, eight of whom had OA, either due to de novo 17q21.31 deletions encompassing EFTUD2 and neighbouring genes or de novo heterozygous EFTUD2 loss-of-function mutations. No EFTUD2 deletions or mutations were found in a series of patients with isolated OA or isolated oculoauriculovertebral spectrum (OAVS). CONCLUSIONS: These data exclude a contiguous gene syndrome for the association of MFD and OA, broaden the spectrum of clinical features ascribed to EFTUD2 haploinsufficiency, define a novel syndromic OA entity, and emphasise the necessity of mRNA maturation through the spliceosome complex for global growth and within specific regions of the embryo during development. Importantly, the majority of patients reported here with EFTUD2 lesions were previously diagnosed with Feingold or CHARGE syndromes or presented with OAVS plus OA, highlighting the variability of expression and the wide range of differential diagnoses.


Assuntos
Atresia Esofágica/genética , Haploinsuficiência , Fatores de Alongamento de Peptídeos/genética , Adolescente , Criança , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 17 , Hibridização Genômica Comparativa , Fácies , Feminino , Humanos , Lactente , Masculino , Fenótipo , Ribonucleoproteína Nuclear Pequena U5 , Síndrome
9.
Nat Commun ; 12(1): 5533, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545091

RESUMO

LMX1B haploinsufficiency causes Nail-patella syndrome (NPS; MIM 161200), characterized by nail dysplasia, absent/hypoplastic patellae, chronic kidney disease, and glaucoma. Accordingly in mice, Lmx1b has been shown to play crucial roles in the development of the limb, kidney and eye. Although one functional allele of Lmx1b appears adequate for development, Lmx1b null mice display ventral-ventral distal limbs with abnormal kidney, eye and cerebellar development, more disruptive, but fully concordant with NPS. In Lmx1b functional knockouts (KOs), Lmx1b transcription in the limb is decreased nearly 6-fold, indicating autoregulation. Herein, we report on two conserved Lmx1b-associated cis-regulatory modules (LARM1 and LARM2) that are bound by Lmx1b, amplify Lmx1b expression with unique spatial modularity in the limb, and are necessary for Lmx1b-mediated limb dorsalization. These enhancers, being conserved across vertebrates (including coelacanth, but not other fish species), and required for normal locomotion, provide a unique opportunity to study the role of dorsalization in the fin to limb transition. We also report on two NPS patient families with normal LMX1B coding sequence, but with loss-of-function variations in the LARM1/2 region, stressing the role of regulatory modules in disease pathogenesis.


Assuntos
Extremidades/fisiopatologia , Proteínas com Homeodomínio LIM/metabolismo , Síndrome da Unha-Patela/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Galinhas , Cromatina/metabolismo , Feminino , Deleção de Genes , Genes Reporter , Homozigoto , Humanos , Masculino , Camundongos , Especificidade de Órgãos , Linhagem , Fenótipo
10.
J Mol Diagn ; 21(3): 462-470, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30731206

RESUMO

Von Hippel-Lindau disease (VHL) is a monogenic disorder characterized by the development of tumors affecting the central nervous system, kidney, pancreas, or adrenal glands, and due to germline mutations in the VHL tumor suppressor gene. About 5% of patients with a typical VHL phenotype have no mutation detected by conventional techniques, so a postzygotic VHL mosaicism can be suspected. The aim of this study was therefore to implement a next-generation sequencing (NGS) strategy for VHL mosaic mutation detection, including an optimization of the original Personal Genome Machine design by enrichment with oligonucleotides corresponding to amplicons with insufficient depth of coverage. Two complementary strategies were developed for the confirmation of mosaic mutations identified by NGS, SNaPshot for variants present at an allelic ratio greater than 5%, and droplet digital PCR for allelic ratio above 1%. VHL mutant plasmids were generated to assess VHL mosaic mutation detection in different exons and to set up an internal quality control that could be included in each run or regularly to validate the assay. This strategy was applied to 47 patients with a suggestive or clinical VHL disease, and mosaic mutations were identified in 8.5% of patients. In conclusion, NGS technologies combined with SNaPshot or droplet digital PCR allow the detection and confirmation of mosaic mutations in a clinical laboratory setting.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mosaicismo , Mutação/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Adolescente , Adulto , Humanos , Limite de Detecção , Masculino , Pessoa de Meia-Idade , Plasmídeos/genética , Reprodutibilidade dos Testes
11.
Eur J Hum Genet ; 27(3): 360-368, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30552424

RESUMO

Holt-Oram syndrome (HOS) is an autosomal dominant condition characterised by the association of congenital heart defect (CHD), with or without rhythm disturbances and radial defects, due to TBX5 variants. The diagnosis is challenged by the variability of expression and the large phenotypic overlap with other conditions, like Okihiro syndrome, TAR syndrome or Fanconi disease. We retrospectively reviewed 212 patients referred for suspicion of HOS between 2002 and 2014, who underwent TBX5 screening. A TBX5 variant has been identified in 78 patients, representing the largest molecular series ever described. In the cohort, 61 met the previously described diagnostic criteria and 17 have been considered with an uncertain HOS diagnosis. A CHD was present in 91% of the patients with a TBX5 variant, atrial septal defects being the most common (61.5%). The genotype-phenotype study highlights the importance of some critical features in HOS: the septal characteristic of the CHD, the bilateral and asymmetric characteristics of the radial defect and the presence of shoulder or elbow mobility defect. Besides, 21 patients presented with an overlapping condition. Among them, 13 had a typical HOS presentation. We discuss the strategies that could be adopted to improve the molecular delineation of the remaining typical patients.


Assuntos
Anormalidades Múltiplas/genética , Cardiopatias Congênitas/genética , Comunicação Interatrial/genética , Deformidades Congênitas das Extremidades Inferiores/genética , Fenótipo , Proteínas com Domínio T/genética , Deformidades Congênitas das Extremidades Superiores/genética , Anormalidades Múltiplas/patologia , Diagnóstico Diferencial , Cardiopatias Congênitas/patologia , Comunicação Interatrial/patologia , Humanos , Lactente , Deformidades Congênitas das Extremidades Inferiores/patologia , Mutação , Deformidades Congênitas das Extremidades Superiores/patologia
12.
Eur J Hum Genet ; 24(1): 44-50, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25898926

RESUMO

Nail-Patella Syndrome (NPS) is a rare autosomal dominant condition comprising nail and skeletal anomalies. Skeletal features include dysplastic patellae and iliac horns, as well as scapula and elbow dysplasia. Nephropathy and glaucoma or intra-ocular hypertension can sometimes be present. NPS is due to variants affecting function in LMX1B, which encodes a LIM-homeodomain protein critical for limb, kidney and eye development. We describe the phenotype and the molecular data of 55 index patients and their 39 relatives presenting with typical NPS. We identified 38 different LMX1B anomalies, 19 of which were not reported before. In our series, 9% of families are not carriers of a LMX1B genomic alteration after extensive study of the coding and non-coding regions of the gene. One of the families showed no linkage to the LMX1B locus, raising the hypothesis of a genetic heterogeneity.


Assuntos
Heterogeneidade Genética , Glaucoma/genética , Proteínas com Homeodomínio LIM/genética , Síndrome da Unha-Patela/genética , Nefrite Hereditária/genética , Hipertensão Ocular/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Criança , Pré-Escolar , Éxons , Feminino , Expressão Gênica , Genes Dominantes , Glaucoma/patologia , Humanos , Ílio/anormalidades , Ílio/metabolismo , Íntrons , Masculino , Pessoa de Meia-Idade , Síndrome da Unha-Patela/patologia , Unhas/metabolismo , Unhas/patologia , Nefrite Hereditária/patologia , Hipertensão Ocular/patologia , Patela/anormalidades , Patela/metabolismo , Fenótipo , Polimorfismo Genético , Escápula/anormalidades , Escápula/metabolismo , Análise de Sequência de DNA
13.
Eur J Hum Genet ; 24(1): 37-43, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25782671

RESUMO

The expression gradient of the morphogen Sonic Hedgehog (SHH) is crucial in establishing the number and the identity of the digits during anteroposterior patterning of the limb. Its anterior ectopic expression is responsible for preaxial polydactyly (PPD). Most of these malformations are due to the gain-of-function of the Zone of Polarizing Activity Regulatory Sequence, the only limb-specific enhancer of SHH known to date. We report a family affected with a novel condition associating PPD and hypertrichosis of the upper back, following an autosomal dominant mode of inheritance. This phenotype is consistent with deregulation of SHH expression during limb and follicle development. In affected members, we identified a 2 kb deletion located ~240 kb upstream from the SHH promoter. The deleted sequence is capable of repressing the transcriptional activity of the SHH promoter in vitro, consistent with a silencer activity. We hypothesize that the deletion of this silencer could be responsible for SHH deregulation during development, leading to a PPD-hypertrichosis phenotype.


Assuntos
Sequência de Bases , Proteínas Hedgehog/genética , Hipertricose/genética , Polidactilia/genética , Deleção de Sequência , Elementos Silenciadores Transcricionais , Regiões 5' não Traduzidas , Adolescente , Adulto , Idoso , Padronização Corporal/genética , Criança , Feminino , Dedos/anormalidades , Regulação da Expressão Gênica no Desenvolvimento , Genes Dominantes , Haplótipos , Humanos , Hipertricose/etnologia , Hipertricose/patologia , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Linhagem , Fenótipo , Polidactilia/etnologia , Polidactilia/patologia , Análise de Sequência de DNA , População Branca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA