Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 83(7): 1153-1164.e4, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36917983

RESUMO

Genomic DNA is a crowded track where motor proteins frequently collide. It remains underexplored whether these collisions carry physiological function. In this work, we develop a single-molecule assay to visualize the trafficking of individual E. coli RNA polymerases (RNAPs) on DNA. Based on transcriptomic data, we hypothesize that RNAP collisions drive bidirectional transcription termination of convergent gene pairs. Single-molecule results show that the head-on collision between two converging RNAPs is necessary to prevent transcriptional readthrough but insufficient to release the RNAPs from the DNA. Remarkably, co-directional collision of a trailing RNAP into the head-on collided complex dramatically increases the termination efficiency. Furthermore, stem-loop structures formed in the nascent RNA are required for collisions to occur at well-defined positions between convergent genes. These findings suggest that physical collisions between RNAPs furnish a mechanism for transcription termination and that programmed genomic conflicts can be exploited to co-regulate the expression of multiple genes.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Transcrição Gênica , RNA Polimerases Dirigidas por DNA/metabolismo , DNA/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
2.
Nature ; 627(8003): 424-430, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418874

RESUMO

Mycobacterium tuberculosis (Mtb) is a bacterial pathogen that causes tuberculosis (TB), an infectious disease that is responsible for major health and economic costs worldwide1. Mtb encounters diverse environments during its life cycle and responds to these changes largely by reprogramming its transcriptional output2. However, the mechanisms of Mtb transcription and how they are regulated remain poorly understood. Here we use a sequencing method that simultaneously determines both termini of individual RNA molecules in bacterial cells3 to profile the Mtb transcriptome at high resolution. Unexpectedly, we find that most Mtb transcripts are incomplete, with their 5' ends aligned at transcription start sites and 3' ends located 200-500 nucleotides downstream. We show that these short RNAs are mainly associated with paused RNA polymerases (RNAPs) rather than being products of premature termination. We further show that the high propensity of Mtb RNAP to pause early in transcription relies on the binding of the σ-factor. Finally, we show that a translating ribosome promotes transcription elongation, revealing a potential role for transcription-translation coupling in controlling Mtb gene expression. In sum, our findings depict a mycobacterial transcriptome that prominently features incomplete transcripts resulting from RNAP pausing. We propose that the pausing phase constitutes an important transcriptional checkpoint in Mtb that allows the bacterium to adapt to environmental changes and could be exploited for TB therapeutics.


Assuntos
Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis , RNA Bacteriano , Transcriptoma , RNA Polimerases Dirigidas por DNA/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , RNA Bacteriano/análise , RNA Bacteriano/biossíntese , RNA Bacteriano/genética , Transcriptoma/genética , Tuberculose/microbiologia , RNA Mensageiro/análise , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Sítio de Iniciação de Transcrição , Fator sigma/metabolismo , Ribossomos/metabolismo , Biossíntese de Proteínas
3.
Respir Res ; 24(1): 306, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057804

RESUMO

BACKGROUND: Particulate matter (PM) air pollution poses a significant risk to respiratory health and is especially linked with various infectious respiratory diseases such as influenza. Our previous studies have shown that H5N1 virus infection could induce alveolar epithelial A549 cell death by enhancing lysosomal dysfunction. This study aims to investigate the mechanisms underlying the effects of PM on influenza virus infections, with a particular focus on lysosomal dysfunction. RESULTS: Here, we showed that PM nanoparticles such as silica and alumina could induce A549 cell death and lysosomal dysfunction, and degradation of lysosomal-associated membrane proteins (LAMPs), which are the most abundant lysosomal membrane proteins. The knockdown of LAMPs with siRNA facilitated cellular entry of both H1N1 and H5N1 influenza viruses. Furthermore, we demonstrated that silica and alumina synergistically increased alveolar epithelial cell death induced by H1N1 and H5N1 influenza viruses by enhancing lysosomal dysfunction via LAMP degradation and promoting viral entry. In vivo, lung injury in the H5N1 virus infection-induced model was exacerbated by pre-exposure to silica, resulting in an increase in the wet/dry ratio and histopathological score. CONCLUSIONS: Our findings reveal the mechanism underlying the synergistic effect of nanoparticles in the early stage of the influenza virus life cycle and may explain the increased number of respiratory patients during periods of air pollution.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Humana , Lesão Pulmonar , Humanos , Animais , Camundongos , Lesão Pulmonar/induzido quimicamente , Lisossomos , Óxido de Alumínio , Dióxido de Silício
4.
J Virol ; 89(20): 10347-58, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26246576

RESUMO

UNLABELLED: As a recycling center, lysosomes are filled with numerous acid hydrolase enzymes that break down waste materials and invading pathogens. Recently, lysosomal cell death has been defined as "lysosomal membrane permeabilization and the consequent leakage of lysosome contents into cytosol." Here, we show that the neuraminidase (NA) of H5N1 influenza A virus markedly deglycosylates and degrades lysosome-associated membrane proteins (LAMPs; the most abundant membrane proteins of lysosome), which induces lysosomal rupture, and finally leads to cell death of alveolar epithelial carcinoma A549 cells and human tracheal epithelial cells. The NA inhibitors peramivir and zanamivir could effectively block the deglycosylation of LAMPs, inhibit the virus cell entry, and prevent cell death induced by the H5N1 influenza virus. The NA of seasonal H1N1 virus, however, does not share these characteristics. Our findings not only reveal a novel role of NA in the early stage of the H5N1 influenza virus life cycle but also elucidate the molecular mechanism of lysosomal rupture crucial for influenza virus induced cell death. IMPORTANCE: The integrity of lysosomes is vital for maintaining cell homeostasis, cellular defense and clearance of invading pathogens. This study shows that the H5N1 influenza virus could induce lysosomal rupture through deglycosylating lysosome-associated membrane proteins (LAMPs) mediated by the neuraminidase activity of NA protein. NA inhibitors such as peramivir and zanamivir could inhibit the deglycosylation of LAMPs and protect lysosomes, which also further interferes with the H5N1 influenza virus infection at early stage of life cycle. This work is significant because it presents new concepts for NA's function, as well as for influenza inhibitors' mechanism of action, and could partially explain the high mortality and high viral load after H5N1 virus infection in human beings and why NA inhibitors have more potent therapeutic effects for lethal avian influenza virus infections at early stage.


Assuntos
Membrana Celular/enzimologia , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/enzimologia , Neuraminidase/metabolismo , Proteínas Virais/metabolismo , Ácidos Carbocíclicos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/química , Ciclopentanos/farmacologia , Citosol/efeitos dos fármacos , Citosol/enzimologia , Citosol/virologia , Inibidores Enzimáticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Guanidinas/farmacologia , Humanos , Hidrólise , Vírus da Influenza A Subtipo H1N1/química , Vírus da Influenza A Subtipo H1N1/enzimologia , Virus da Influenza A Subtipo H5N1/química , Virus da Influenza A Subtipo H5N1/enzimologia , Proteínas de Membrana Lisossomal/química , Lisossomos/efeitos dos fármacos , Lisossomos/virologia , Ligação Proteica , Proteólise , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/virologia , Especificidade da Espécie , Internalização do Vírus/efeitos dos fármacos , Zanamivir/farmacologia
5.
J Biol Chem ; 287(11): 8457-67, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22253445

RESUMO

Phosphatidylinositol kinases (PI kinases) play an important role in the life cycle of several viruses after infection. Using gene knockdown technology, we demonstrate that phosphatidylinositol 4-kinase IIIß (PI4KB) is required for cellular entry by pseudoviruses bearing the severe acute respiratory syndrome-coronavirus (SARS-CoV) spike protein and that the cell entry mediated by SARS-CoV spike protein is strongly inhibited by knockdown of PI4KB. Consistent with this observation, pharmacological inhibitors of PI4KB blocked entry of SARS pseudovirions. Further research suggested that PI4P plays an essential role in SARS-CoV spike-mediated entry, which is regulated by the PI4P lipid microenvironment. We further demonstrate that PI4KB does not affect virus entry at the SARS-CoV S-ACE2 binding interface or at the stage of virus internalization but rather at or before virus fusion. Taken together, these results indicate a new function for PI4KB and suggest a new drug target for preventing SARS-CoV infection.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Síndrome Respiratória Aguda Grave/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Vírion/metabolismo , Internalização do Vírus , Animais , Chlorocebus aethiops , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Células HEK293 , Humanos , Lipídeos de Membrana/metabolismo , Antígenos de Histocompatibilidade Menor , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Síndrome Respiratória Aguda Grave/tratamento farmacológico
6.
bioRxiv ; 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36945399

RESUMO

Mycobacterium tuberculosis (Mtb) is a bacterial pathogen that causes tuberculosis, an infectious disease that inflicts major health and economic costs around the world 1 . Mtb encounters a diversity of environments during its lifecycle, and responds to these changing environments by reprogramming its transcriptional output 2 . However, the transcriptomic features of Mtb remain poorly characterized. In this work, we comprehensively profile the Mtb transcriptome using the SEnd-seq method that simultaneously captures the 5' and 3' ends of RNA 3 . Surprisingly, we find that the RNA coverage for most of the Mtb transcription units display a gradual drop-off within a 200-500 nucleotide window downstream of the transcription start site, yielding a massive number of incomplete transcripts with heterogeneous 3' ends. We further show that the accumulation of these short RNAs is mainly due to the intrinsically low processivity of the Mtb transcription machinery rather than trans-acting factors such as Rho. Finally, we demonstrate that transcription-translation coupling plays a critical role in generating full-length protein-coding transcripts in Mtb. In sum, our results depict a mycobacterial transcriptome that is dominated by incomplete RNA products, suggesting a distinctive set of transcriptional regulatory mechanisms that could be exploited for new therapeutics.

7.
Cell Mol Immunol ; 19(6): 702-714, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35332300

RESUMO

Innate immunity plays critical antiviral roles. The highly virulent avian influenza viruses (AIVs) H5N1, H7N9, and H5N6 can better escape host innate immune responses than the less virulent seasonal H1N1 virus. Here, we report a mechanism by which transcriptional readthrough (TRT)-mediated suppression of innate immunity occurs post AIV infection. By using cell lines, mouse lungs, and patient PBMCs, we showed that genes on the complementary strand ("trans" genes) influenced by TRT were involved in the disruption of host antiviral responses during AIV infection. The trans-TRT enhanced viral lethality, and TRT abolishment increased cell viability and STAT1/2 expression. The viral NS1 protein directly bound to SSU72, and degradation of SSU72 induced TRT. SSU72 overexpression reduced TRT and alleviated mouse lung injury. Our results suggest that AIVs infection induce TRT by reducing SSU72 expression, thereby impairing host immune responses, a molecular mechanism acting through the NS1-SSU72-trans-TRT-STAT1/2 axis. Thus, restoration of SSU72 expression might be a potential strategy for preventing AIV pandemics.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Subtipo H7N9 do Vírus da Influenza A , Influenza Humana , Animais , Antivirais , Humanos , Imunidade Inata , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/metabolismo , Subtipo H7N9 do Vírus da Influenza A/metabolismo , Camundongos , Fosfoproteínas Fosfatases , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
8.
Nat Microbiol ; 4(11): 1907-1918, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31308523

RESUMO

The ability to determine full-length nucleotide composition of individual RNA molecules is essential for understanding the architecture and function of a transcriptome. However, experimental approaches capable of capturing the sequences of both 5' and 3' termini of the same transcript remain scarce. In the present study, simultaneous 5' and 3' end sequencing (SEnd-seq)-a high-throughput and unbiased method that simultaneously maps transcription start and termination sites with single-nucleotide resolution-is presented. Using this method, a comprehensive view of the Escherichia coli transcriptome was obtained, which displays an unexpected level of complexity. SEnd-seq notably expands the catalogue of transcription start sites and termination sites, defines unique transcription units and detects prevalent antisense RNA. Strikingly, the results of the present study unveil widespread overlapping bidirectional terminators located between opposing gene pairs. Furthermore, it has been shown that convergent transcription is a major contributor to highly efficient bidirectional termination both in vitro and in vivo. This finding highlights an underappreciated role of RNA polymerase conflicts in shaping transcript boundaries and suggests an evolutionary strategy for modulating transcriptional output by arranging gene orientation.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Perfilação da Expressão Gênica/métodos , Regiões Terminadoras Genéticas , Evolução Molecular , Anotação de Sequência Molecular , RNA Antissenso , Análise de Sequência de RNA/métodos , Transcrição Gênica
9.
Front Immunol ; 9: 2812, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564234

RESUMO

Given the high mortality rate (>50%) and potential danger of intrapersonal transmission, highly pathogenic avian influenza (HPAI) H5N1 epidemics still pose a significant threat to humans. γδ T cells, which participate on the front line of the host immune defense, demonstrate both innate, and adaptive characteristics in their immune response and have potent antiviral activity against various viruses. However, the roles of γδ T cells in HPAI H5N1 viral infection remain unclear. In this study, we found that γδ T cells provided a crucial protective function in the defense against HPAI H5N1 viral infection. HPAI H5N1 viruses could directly activate γδ T cells, leading to enhanced CD69 expression and IFN-γ secretion. Importantly, we found that the trimer but not the monomer of HPAI H5N1 virus hemagglutinin (HA) proteins could directly activate γδ T cells. HA-induced γδ T cell activation was dependent on both sialic acid receptors and HA glycosylation, and this activation could be inhibited by the phosphatase calcineurin inhibitor cyclosporin A but not by the phosphatidylinositol 3-kinase (PI3-K) inhibitors wortmannin and LY294002. Our findings provide a further understanding the mechanism underlying γδ T cell-mediated innate and adoptive immune responses against HPAI H5N1 viral infection, which helps to develop novel therapeutic strategies for the treatment of H5N1 infection in the future.


Assuntos
Virus da Influenza A Subtipo H5N1/imunologia , Influenza Aviária/imunologia , Linfócitos Intraepiteliais/imunologia , Imunidade Adaptativa/efeitos dos fármacos , Imunidade Adaptativa/imunologia , Animais , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/imunologia , Aves/imunologia , Aves/virologia , Inibidores de Calcineurina/farmacologia , Ciclosporina/farmacologia , Glicosilação/efeitos dos fármacos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunidade Inata/imunologia , Interferon gama/imunologia , Linfócitos Intraepiteliais/efeitos dos fármacos , Lectinas Tipo C/imunologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Receptores de Superfície Celular/imunologia
10.
Cell Death Dis ; 8(7): e2954, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28749469

RESUMO

Although zinc oxide nanoparticles (ZnONPs) are widely used, they have raised concerns of toxicity in humans. Previous studies have indicated that reactive oxygen species (ROS) and autophagy are involved in the cytotoxicity of ZnONPs, but the regulatory mechanisms between autophagy and ROS remain to be elucidated. Herein, we comprehensively investigated the regulatory mechanism of autophagy and the link between autophagy and ROS in ZnONPs-treated lung epithelial cells. We demonstrated that ZnONPs could induce autophagy, and this process could enhance the dissolution of ZnONPs in lysosomes to release zinc ions. Sequentially, zinc ions released from ZnONPs were able to damage not only lysosomes, leading to impaired autophagic flux, but also mitochondria. Impaired autophagic flux resulted in the accumulation of damaged mitochondria, which could generate excessive ROS to cause cell death. We further demonstrated that the inhibition of autophagy by either pharmacological inhibitors or small interfering RNA (siRNA)-mediated knockdown of Beclin-1 and AMP-activated protein kinase could ameliorate ZnONPs-induced cell death. Moreover, we found that lysosomal-associated membrane protein 1/2 (LAMP-1/2), which were the most abundant highly glycosylated protein in late endosomes/lysosomes, exhibited aberrant expression pattern upon treatment with ZnONPs. Intriguingly, LAMP-2 knockdown, but not LAMP-1 knockdown, could exacerbate the ROS generation and cell death induced by ZnONPs treatment. Meanwhile, LAMP-2 overexpression alleviated ZnONPs-induced cell death, suggesting that LAMP-2 was linked to this toxic phenotype induced by ZnONPs. Our results indicate that autophagic dysfunction could contribute to excessive ROS generation upon treatment with ZnONPs in lung epithelial cells, suggesting that modulating the autophagy process would minimize ZnONPs-associated toxicity.


Assuntos
Células Epiteliais/citologia , Células Epiteliais/metabolismo , Pulmão/citologia , Nanopartículas/química , Óxido de Zinco/química , Células A549 , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/efeitos dos fármacos , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Citometria de Fluxo , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/genética , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Microscopia Eletrônica de Transmissão , RNA Interferente Pequeno , Espécies Reativas de Oxigênio/metabolismo , Óxido de Zinco/farmacologia
11.
PLoS One ; 10(8): e0136613, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26317987

RESUMO

B cell hybridomas are an important source of monoclonal antibodies. In this paper, we developed a high-throughput method to characterize mouse IgG antibodies using surface plasmon resonance technology. This assay rapidly determines their sub-isotypes, whether they bind native antigen and their approximate affinities for the antigen using only 50 µl of hybridoma cell culture supernatant. Moreover, we found that mouse hybridomas secreting IgG antibodies also have membrane form IgG expression without Igα. Based on this surface IgG, we used flow cytometry to isolate rare γ2a isotype switched variants from a γ2b antibody secreting hybridoma cell line. Also, we used fluorescent antigen to single cell sort antigen binding hybridoma cells from bulk mixture of fused hybridoma cells instead of the traditional multi-microwell plate screening and limiting dilution sub-cloning thus saving time and labor. The IgG monoclonal antibodies specific for the native antigen identified with these methods are suitable for in vivo therapeutic uses, but also for sandwich ELISA assays, histology, flow cytometry, immune precipitation and x-ray crystallography.


Assuntos
Anticorpos Monoclonais Murinos/química , Antígenos/química , Linfócitos B/química , Hibridomas/química , Imunoglobulina G/química , Animais , Anticorpos Monoclonais Murinos/imunologia , Antígenos/imunologia , Linfócitos B/imunologia , Hibridomas/imunologia , Imunoglobulina G/imunologia , Camundongos
12.
Sci China Life Sci ; 57(10): 959-72, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25218824

RESUMO

Ebola virus (EBOV) causes a highly lethal hemorrhagic fever syndrome in humans and has been associated with mortality rates of up to 91% in Zaire, the most lethal strain. Though the viral envelope glycoprotein (GP) mediates widespread inflammation and cellular damage, these changes have mainly focused on alterations at the protein level, the role of microRNAs (miRNAs) in the molecular pathogenesis underlying this lethal disease is not fully understood. Here, we report that the mi-RNAs hsa-miR-1246, hsa-miR-320a and hsa-miR-196b-5p were induced in human umbilical vein endothelial cells (HUVECs) following expression of EBOV GP. Among the proteins encoded by predicted targets of these miRNAs, the adhesion-related molecules tissue factor pathway inhibitor (TFPI), dystroglycan1 (DAG1) and the caspase 8 and FADD-like apoptosis regulator (CFLAR) were significantly downregulated in EBOV GP-expressing HUVECs. Moreover, inhibition of hsa-miR-1246, hsa-miR-320a and hsa-miR-196b-5p, or overexpression of TFPI, DAG1 and CFLAR rescued the cell viability that was induced by EBOV GP. Our results provide a novel molecular basis for EBOV pathogenesis and may contribute to the development of strategies to protect against future EBOV pandemics.


Assuntos
Doença pelo Vírus Ebola/genética , MicroRNAs/genética , Proteínas do Envelope Viral/metabolismo , Western Blotting , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Caspase 8/metabolismo , Sobrevivência Celular , Distroglicanas/metabolismo , Ebolavirus , Regulação da Expressão Gênica , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Células Endoteliais da Veia Umbilical Humana , Humanos , Técnicas In Vitro , Inflamação , Lipoproteínas/metabolismo , MicroRNAs/fisiologia
13.
Nat Commun ; 5: 3594, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24800825

RESUMO

The potential for avian influenza H5N1 outbreaks has increased in recent years. Thus, it is paramount to develop novel strategies to alleviate death rates. Here we show that avian influenza A H5N1-infected patients exhibit markedly increased serum levels of angiotensin II. High serum levels of angiotensin II appear to be linked to the severity and lethality of infection, at least in some patients. In experimental mouse models, infection with highly pathogenic avian influenza A H5N1 virus results in downregulation of angiotensin-converting enzyme 2 (ACE2) expression in the lung and increased serum angiotensin II levels. Genetic inactivation of ACE2 causes severe lung injury in H5N1-challenged mice, confirming a role of ACE2 in H5N1-induced lung pathologies. Administration of recombinant human ACE2 ameliorates avian influenza H5N1 virus-induced lung injury in mice. Our data link H5N1 virus-induced acute lung failure to ACE2 and provide a potential treatment strategy to address future flu pandemics.


Assuntos
Virus da Influenza A Subtipo H5N1/patogenicidade , Lesão Pulmonar/tratamento farmacológico , Infecções por Orthomyxoviridae/prevenção & controle , Peptidil Dipeptidase A/sangue , Peptidil Dipeptidase A/farmacologia , Adolescente , Adulto , Enzima de Conversão de Angiotensina 2 , Animais , Criança , Pré-Escolar , Modelos Animais de Doenças , Regulação para Baixo , Feminino , História Antiga , Humanos , Vírus da Influenza A Subtipo H1N1 , Influenza Humana/sangue , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Infecções por Orthomyxoviridae/sangue , Infecções por Orthomyxoviridae/virologia , Peptidil Dipeptidase A/biossíntese , Peptidil Dipeptidase A/genética , Proteínas Recombinantes/farmacologia , Adulto Jovem
14.
Cell Res ; 22(3): 528-38, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22025253

RESUMO

The 2009 flu pandemic involved the emergence of a new strain of a swine-origin H1N1 influenza virus (S-OIV H1N1) that infected almost every country in the world. Most infections resulted in respiratory illness and some severe cases resulted in acute lung injury. In this report, we are the first to describe a mouse model of S-OIV virus infection with acute lung injury and immune responses that reflect human clinical disease. The clinical efficacy of the antiviral oseltamivir (Tamiflu) administered in the early stages of S-OIV H1N1 infection was confirmed in the mouse model. Moreover, elevated levels of IL-17, Th-17 mediators and IL-17-responsive cytokines were found in serum samples of S-OIV-infected patients in Beijing. IL-17 deficiency or treatment with monoclonal antibodies against IL-17-ameliorated acute lung injury induced by the S-OIV H1N1 virus in mice. These results suggest that IL-17 plays an important role in S-OIV-induced acute lung injury and that monoclonal antibodies against IL-17 could be useful as a potential therapeutic remedy for future S-OIV H1N1 pandemics.


Assuntos
Vírus da Influenza A Subtipo H1N1/patogenicidade , Influenza Humana/virologia , Interleucina-17/imunologia , Lesão Pulmonar/imunologia , Lesão Pulmonar/patologia , Doença Aguda , Animais , Peso Corporal , Modelos Animais de Doenças , Humanos , Interleucina-17/deficiência , Cinética , Lesão Pulmonar/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pandemias , Taxa de Sobrevida
15.
Sci Signal ; 5(212): ra16, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22355189

RESUMO

The threat of a new influenza pandemic has existed since 1997, when the highly pathogenic H5N1 strain of avian influenza A virus infected humans in Hong Kong and spread across Asia, where it continued to infect poultry and people. The human mortality rate of H5N1 infection is about 60%, whereas that of seasonal H1N1 infection is less than 0.1%. The high mortality rate associated with H5N1 infection is predominantly a result of respiratory failure caused by acute lung injury; however, how viral infection contributes to this disease pathology is unclear. Here, we used electron microscopy to show the accumulation of autophagosomes in H5N1-infected lungs from a human cadaver and mice, as well as in infected A549 human epithelial lung cells. We also showed that H5N1, but not seasonal H1N1, induced autophagic cell death in alveolar epithelial cells through a pathway involving the kinase Akt, the tumor suppressor protein TSC2, and the mammalian target of rapamycin. Additionally, we suggest that the hemagglutinin protein of H5N1 may be responsible for stimulating autophagy. When applied prophylactically, reagents that blocked virus-induced autophagic signaling substantially increased the survival rate of mice and substantially ameliorated the acute lung injury and mortality caused by H5N1 infection. We conclude that the autophagic cell death of alveolar epithelial cells likely plays a crucial role in the high mortality rate of H5N1 infection, and we suggest that autophagy-blocking agents might be useful as prophylactics and therapeutics against infection of humans by the H5N1 virus.


Assuntos
Autofagia/fisiologia , Virus da Influenza A Subtipo H5N1 , Influenza Humana/patologia , Pulmão/ultraestrutura , Transdução de Sinais/fisiologia , Análise de Variância , Animais , Autofagia/efeitos dos fármacos , Proteína 5 Relacionada à Autofagia , Western Blotting , Linhagem Celular , Primers do DNA/genética , Células Epiteliais/fisiologia , Técnicas de Silenciamento de Genes , Glicoproteínas de Hemaglutininação de Vírus da Influenza/administração & dosagem , Glicoproteínas de Hemaglutininação de Vírus da Influenza/farmacologia , Humanos , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica , Proteínas Associadas aos Microtúbulos/genética , Proteína Oncogênica v-akt/metabolismo , Fagossomos/patologia , Reação em Cadeia da Polimerase em Tempo Real , Serina-Treonina Quinases TOR/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/metabolismo
16.
J Mol Cell Biol ; 3(4): 221-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21816972

RESUMO

In 2009, a novel swine-origin H1N1 influenza virus emerged in Mexico and quickly spread to other countries, including China. This 2009 pandemic H1N1 can cause human respiratory disease, but its pathogenesis remains poorly understood. Here, we studied the infection and pathogenesis of a new 2009 pandemic strain, A/Wenshan/01/2009 H1N1, in China in human airway epithelial cell lines compared with contemporary seasonal H1N1 influenza virus. Our results showed that viral infection by the A/Wenshan H1N1 induced significant apoptotic cell death in both the human nasopharyngeal carcinoma cell line CNE-2Z and the human lung adenocarcinoma cell line A549. The A/Wenshan H1N1 virus enters both of these cell types more efficiently than the seasonal influenza virus. Viral entry in both cell lines was shown to be mediated by clathrin- and dynamin-dependent endocytosis. Therefore, we discovered that the 2009 pandemic H1N1 strain, A/Wenshan/01/2009, can induce apoptotic cell death in epithelial cells of the human respiratory tract, suggesting a molecular pathogenesis for the 2009 pandemic H1N1.


Assuntos
Apoptose , Células Epiteliais/citologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Caspase 3/metabolismo , Linhagem Celular , Clatrina/metabolismo , Dinaminas/metabolismo , Endocitose , Células Epiteliais/virologia , Humanos , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/epidemiologia , Influenza Humana/patologia , Influenza Humana/virologia , Pandemias , Sistema Respiratório/citologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA