Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Nano ; 16(11): 18990-19001, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36259638

RESUMO

One of the biggest threats for bacteria-based bioreactors in the biotechnology industry is infections caused by bacterial viruses called bacteriophages. More than 70% of companies admitted to encountering this problem. Despite phage infections being such a dangerous and widespread risk, to date, there are no effective methods to avoid them. Here we present a peptide-grafted compounds that irreversibly deactivate bacteriophages and remain safe for bacteria and mammalian cells. The active compounds consist of a core (cyclodextrin or gold nanoparticle) coated with a hydrophobic chain terminated with a peptide selective for bacteriophages. Such peptides were selected via a phage display technique. This approach enables irreversible deactivation of the wide range of T-like phages (including the most dangerous in phage infections, phage T1) at 37 °C in 1 h. We show that our compounds can be used directly inside the environment of the bioreactor, but they are also a safe additive to stocks of antibiotics and expression inducers (such as isopropyl ß-d-1-thiogalactopyranoside, i.e., IPTG) that cannot be autoclaved and are a common source of phage infections.


Assuntos
Infecções Bacterianas , Bacteriófagos , Ciclodextrinas , Nanopartículas Metálicas , Animais , Ciclodextrinas/farmacologia , Ouro/farmacologia , Bactérias , Peptídeos/farmacologia , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA