Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 27(21): 3747-3760, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30016433

RESUMO

The arterial and venous poles of the mammalian heart are hotspots of congenital heart defects (CHD) such as those observed in 22q11.2 deletion (or DiGeorge) and Holt-Oram syndromes. These regions of the heart are derived from late differentiating cardiac progenitor cells of the Second Heart Field (SHF) located in pharyngeal mesoderm contiguous with the elongating heart tube. The T-box transcription factor Tbx1, encoded by the major 22q11.2 deletion syndrome gene, regulates SHF addition to both cardiac poles from a common progenitor population. Despite the significance of this cellular addition the mechanisms regulating the deployment of common progenitor cells to alternate cardiac poles remain poorly understood. Here we demonstrate that Tbx5, mutated in Holt-Oram syndrome and essential for venous pole development, is activated in Tbx1 expressing cells in the posterior region of the SHF at early stages of heart tube elongation. A subset of the SHF transcriptional program, including Tbx1 expression, is subsequently downregulated in Tbx5 expressing cells, generating a transcriptional boundary between Tbx1-positive arterial pole and Tbx5-positive venous pole progenitor cell populations. We show that normal downregulation of the definitive arterial pole progenitor cell program in the posterior SHF is dependent on both Tbx1 and Tbx5. Furthermore, retinoic acid (RA) signaling is required for Tbx5 activation in Tbx1-positive cells and blocking RA signaling at the time of Tbx5 activation results in atrioventricular septal defects at fetal stages. Our results reveal sequential steps of cardiac progenitor cell patterning and provide mechanistic insights into the origin of common forms of CHD.


Assuntos
Anormalidades Múltiplas/metabolismo , Vasos Coronários/metabolismo , Síndrome de DiGeorge/metabolismo , Cardiopatias Congênitas/metabolismo , Comunicação Interatrial/metabolismo , Deformidades Congênitas das Extremidades Inferiores/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Proteínas com Domínio T/metabolismo , Tretinoína/metabolismo , Deformidades Congênitas das Extremidades Superiores/metabolismo , Anormalidades Múltiplas/genética , Animais , Síndrome de DiGeorge/genética , Regulação da Expressão Gênica no Desenvolvimento , Cardiopatias Congênitas/genética , Defeitos dos Septos Cardíacos/genética , Defeitos dos Septos Cardíacos/metabolismo , Comunicação Interatrial/genética , Deformidades Congênitas das Extremidades Inferiores/genética , Camundongos , Camundongos Transgênicos , Deformidades Congênitas das Extremidades Superiores/genética
2.
Biochimie ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38750879

RESUMO

The translocator protein TSPO is an evolutionary conserved mitochondrial protein overexpressed in various contexts of neurodegeneration. Friedreich Ataxia (FA) is a neurodegenerative disease due to GAA expansions in the FXN gene leading to decreased expression of frataxin, a mitochondrial protein involved in the biosynthesis of iron-sulfur clusters. We previously reported that Tspo was overexpressed in a Drosophila model of this disease generated by CRISPR/Cas9 insertion of approximately 200 GAA in the intron of fh, the fly frataxin gene. Here, we describe a new Drosophila model of FA with 42 GAA repeats, called fh-GAAs. The smaller expansion size allowed to obtain adults exhibiting hallmarks of the FA disease, including short lifespan, locomotory defects and hypersensitivity to oxidative stress. The reduced lifespan was fully rescued by ubiquitous expression of human FXN, confirming that both frataxins share conserved functions. We observed that Tspo was overexpressed in heads and decreased in intestines of these fh-GAAs flies. Then, we further overexpressed Tspo specifically in glial cells and observed improved survival. Finally, we investigated the effects of Tspo overexpression in healthy flies. Increased longevity was conferred by glial-specific overexpression, with opposite effects in neurons. Overall, this study highlights protective effects of glial TSPO in Drosophila both in a neurodegenerative and a healthy context.

3.
Biol Open ; 11(9)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36066120

RESUMO

Filamins are large proteins with actin-binding properties. Mutations in FLNC, one of the three filamin genes in humans, have recently been implicated in dominant cardiomyopathies, but the underlying mechanisms are not well understood. Here, we aimed to use Drosophila melanogaster as a new in vivo model to study these diseases. First, we show that adult-specific cardiac RNAi-induced depletion of Drosophila Filamin (dFil) induced cardiac dilatation, impaired systolic function and sarcomeric alterations, highlighting its requirement for cardiac function and maintenance of sarcomere integrity in the adult stage. Next, we introduced in the cheerio gene, using CRISPR/Cas9 gene editing, three missense variants, previously identified in patients with hypertrophic cardiomyopathy. Flies carrying these variants did not exhibit cardiac defects or increased propensity to form filamin aggregates, arguing against their pathogenicity. Finally, we show that deletions of the C-term part of dFil carrying the last four Ig-like domains are dispensable for cardiac function. Collectively, these results highlight the relevance of this model to explore the cardiac function of filamins and increase our understanding of physio-pathological mechanisms involved in FLNC-related cardiomyopathies. This article has an associated First Person interview with the first author of the paper.


Assuntos
Cardiomiopatias , Drosophila , Actinas/metabolismo , Animais , Sistemas CRISPR-Cas , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Filaminas/química , Filaminas/genética , Filaminas/metabolismo , Humanos , Virulência
4.
Nat Cell Biol ; 21(6): 674-686, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31160712

RESUMO

In vertebrates, multipotent progenitors located in the pharyngeal mesoderm form cardiomyocytes and branchiomeric head muscles, but the dynamic gene expression programmes and mechanisms underlying cardiopharyngeal multipotency and heart versus head muscle fate choices remain elusive. Here, we used single-cell genomics in the simple chordate model Ciona to reconstruct developmental trajectories forming first and second heart lineages and pharyngeal muscle precursors and characterize the molecular underpinnings of cardiopharyngeal fate choices. We show that FGF-MAPK signalling maintains multipotency and promotes the pharyngeal muscle fate, whereas signal termination permits the deployment of a pan-cardiac programme, shared by the first and second heart lineages, to define heart identity. In the second heart lineage, a Tbx1/10-Dach pathway actively suppresses the first heart lineage programme, conditioning later cell diversity in the beating heart. Finally, cross-species comparisons between Ciona and the mouse evoke the deep evolutionary origins of cardiopharyngeal networks in chordates.


Assuntos
Ciona intestinalis/genética , Coração/crescimento & desenvolvimento , Músculos Faríngeos/crescimento & desenvolvimento , Proteínas com Domínio T/genética , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Ciona intestinalis/crescimento & desenvolvimento , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Genômica , Mesoderma/crescimento & desenvolvimento , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/genética
5.
Elife ; 72018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451684

RESUMO

In vertebrates, head and trunk muscles develop from different mesodermal populations and are regulated by distinct genetic networks. Neck muscles at the head-trunk interface remain poorly defined due to their complex morphogenesis and dual mesodermal origins. Here, we use genetically modified mice to establish a 3D model that integrates regulatory genes, cell populations and morphogenetic events that define this transition zone. We show that the evolutionary conserved cucullaris-derived muscles originate from posterior cardiopharyngeal mesoderm, not lateral plate mesoderm, and we define new boundaries for neural crest and mesodermal contributions to neck connective tissue. Furthermore, lineage studies and functional analysis of Tbx1- and Pax3-null mice reveal a unique developmental program for somitic neck muscles that is distinct from that of somitic trunk muscles. Our findings unveil the embryological and developmental requirements underlying tetrapod neck myogenesis and provide a blueprint to investigate how muscle subsets are selectively affected in some human myopathies.


Assuntos
Tecido Conjuntivo/embriologia , Mamíferos/embriologia , Morfogênese , Músculos do Pescoço/embriologia , Animais , Tecido Conjuntivo/diagnóstico por imagem , Tecido Conjuntivo/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Mamíferos/genética , Mamíferos/metabolismo , Mesoderma/diagnóstico por imagem , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/embriologia , Músculo Esquelético/metabolismo , Músculos do Pescoço/diagnóstico por imagem , Músculos do Pescoço/metabolismo , Somitos/diagnóstico por imagem , Somitos/embriologia , Somitos/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA