Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37512386

RESUMO

To develop plasma-resistant glass materials suitable for semiconductor etching processes, we introduced alkaline earth oxides (ROs) into a Li2O-Al2O3-SiO2 (LAS) glass. Analysis of glass properties with respect to the additives revealed that among the analyzed materials, the LAS material in which Li2O was partially replaced by MgO (MLAS) exhibited the most favorable characteristics, including a low dielectric constant (6.3) and thermal expansion coefficient (2.302 × 10-6/°C). The high performance of MLAS is attributed to the high ionic field strength of Mg2+ ions, which restricts the movement of Li+ ions under the influence of electric fields and thermal vibrations at elevated temperatures. When exposed to CF4/O2/Ar plasma, the etching speed of RO-doped glasses decreased compared with that of quartz and LAS glass, primarily owing to the generation of a high-sublimation-point fluoride layer on the surface. Herein, MLAS demonstrated the slowest etching speed, indicating exceptional plasma resistance. X-ray photoelectron spectroscopy analysis conducted immediately after plasma etching revealed that the oxidation-to-fluorination ratio of Li was the lowest for MLAS. This observation suggests that the presence of Mg2+ ions in the plasma discharge inhibits the migration of Li+ ions toward the surface, thereby contributing to the excellent plasma resistance of MLAS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA