Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Biomacromolecules ; 25(1): 379-387, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38108296

RESUMO

Mussels are marine organisms that are capable of constructing an underwater adhesion between their bodies and rigid structures. It is well known that mussels achieve underwater adhesion through the presence of mussel adhesive proteins (MAPs) that contain high levels of 3,4-dihydroxyphenylalanine (DOPA). Although the extraordinary underwater adhesive properties of mussels are attributed to DOPA, its capacity to play a dual role in surface adhesion and internal cohesion is inherently limited. However, mussels employ a combination of chemical moieties, not just DOPA, along with anatomical components, such as plaque and byssus, in underwater adhesion. This also involves junction proteins that connect the plaque and byssus. In this study, a novel hybrid MAP was bioengineered via the fusion of the plaque protein (foot protein type 1) and the histidine-rich domain of the junction protein (foot protein type 4). To achieve direct adhesion underwater, the adhesive should maintain surface adhesion without disintegrating. Notably, the histidine-Zn-coordinated hybrid MAP hydrogel maintained a high surface adhesion ability even after cross-linking because of the preservation of its unoxidized and non-cross-linked DOPA moieties. The formulated adhesive hydrogel system based on the bioengineered hybrid MAP exhibited self-healing properties, owing to the reversible metal coordination bonds. The developed adhesive hydrogel exhibits outstanding levels of bulk adhesion in underwater environments, highlighting its potential as an effective adhesive biomaterial. Therefore, the introduction of histidine-rich domains into MAPs may be applied in various studies to formulate mussel-inspired adhesives with self-healing properties and to fully utilize the adhesive ability of DOPA.


Assuntos
Adesivos , Bivalves , Animais , Adesivos/química , Histidina , Zinco , Hidrogéis , Proteínas/química , Di-Hidroxifenilalanina/química , Bivalves/metabolismo
2.
Chemistry ; 29(10): e202203009, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36464650

RESUMO

A π-extended, diaza-triphenylene embedded, mono-anionic corrole analogue and its NiII complex were synthesized from a diaza-triphenylene precursor, which was obtained from a double one-carbon insertion into a naphthobipyrrole diester. Following conversion to the corresponding activated diol and acid-catalyzed condensation with pyrrole, subsequent reaction with pentafluorobenzaldehyde afforded mono-anionic, π-extended bipyricorrole-like macrocycle. Attempted NiII insertion with Ni(OAc)2 ⋅ 4H2 O resulted an ESR active, NiII bipyricorrole radical complex, which was converted to a stable cationic NiII complex upon treatment with [(Et3 O)+ (SbCl6 )- ]. Both complexes were characterized by 1 H and 13 C NMR, UV/Vis spectroscopy and single crystal X-ray diffraction analysis. The NiII bipyricorrole radical complex is converted to a cationic NiII complex by single-electron reduction using cobaltocene. Both the cationic NiII complex and the radical NiII complex exhibited ligand-centered redox behavior, whereas the NiII remains in the +2 oxidation state.

3.
Analyst ; 149(1): 11-28, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38051259

RESUMO

Surface-enhanced Raman scattering (SERS) is a very important tool in vibrational spectroscopy. The coupling of nanomaterials induces local surface plasmon resonance (LSPR), which contributes greatly to SERS. Due to its remarkable sensitivity in trace detection, SERS has gained prominence in the fields of catalysis, biosensors, drug tracking, and optoelectronic devices. SERS activity is believed to be closely related to the LSPR and charge transfer (CT) of the material. Noble metal nanostructures have been commonly used as SERS-active substrates due to their strong local electric fields and relatively mature preparation, application, and enhancement mechanisms. In recent years, SERS research based on semiconductor materials has attracted significant attention because semiconductor materials have advantages such as repeatable preparation, simple pretreatment, stable SERS spectra and superior biocompatibility, stability, and reproducibility. Semiconductor-based SERS has the potential to enrich SERS theory and applications. Thus, the development of semiconductor materials will introduce a new epoch for SERS-based research. In this review, we outline the two main kinds of semiconductor SERS-active substrates: inorganic and organic semiconductor SERS-active substrates. We also provide an overview of the SERS mechanism for different kinds of materials and SERS-based applications.

4.
Molecules ; 28(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38067581

RESUMO

In this study, mineral components extracted during the desalination process were concentrated and dried, and then identified using energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), infrared (IR), and Raman spectroscopy. For detailed identification, two-dimensional correlation spectroscopy (2D-COS) was also applied to the XRD patterns, IR spectra, and Raman spectra of the minerals obtained from each desalination step. The EDS results confirm the presence of seawater minerals rich in Na+ ions in the first and second extracts, Ca2+ ions are present only in these stages, and Mg2+ ions are abundant in the third and final extracts. The presence of NaCl and MgSO4 minerals in the first to third and final extracts, respectively, was confirmed using XRD patterns. From the IR and Raman spectra, we found that the degree of hydration of SO42--related extracts decreased as seawater underwent desalination. Furthermore, 2D-COS provides information about the changes in the extracts obtained from the first to final stage. Heterospectral XRD and Raman 2D-COS provides clear assignments for Raman spectra. The use of 2D-COS helps to understand the characteristics of seawater extracts during the desalination process, and provides a better understanding of chemical and structural adaptations within the extract. As a result, this method contributes to an improved understanding of the desalination process and final products.

5.
Angew Chem Int Ed Engl ; 62(34): e202306709, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37328756

RESUMO

π-Conjugated organic semiconductors are promising materials for surface-enhanced Raman scattering (SERS)-active substrates based on the tunability of electronic structures and molecular orbitals. Herein, we investigate the effect of the temperature-mediated resonance-structure transitions of poly(3,4-ethylenedioxythiophene) (PEDOT) in poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT : PSS) films on the interactions between substrate and probe molecules, thereby affecting the SERS activity. Absorption spectroscopy and density functional theory calculations show that this effect occurs mainly due to delocalization of the electron distribution in molecular orbitals, effectively promoting the charge transfer between the semiconductor and probe molecules. In this work, we investigate for the first time the effect of electron delocalization in molecular orbitals on SERS activity, which will provide new design ideas for the development of highly sensitive SERS substrates.

6.
Anal Chem ; 94(50): 17422-17430, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36454685

RESUMO

As observed in the COVID-19 pandemic, RNA viruses continue to rapidly evolve through mutations. In the absence of effective therapeutics, early detection of new severely pathogenic viruses and quarantine of infected people are critical for reducing the spread of the viral infections. However, conventional detection methods require a substantial amount of time to develop probes specific to new viruses, thereby impeding immediate response to the emergence of viral pathogens. In this study, we identified multiple types of viruses by obtaining the spectral fingerprint of their surface proteins with probe-free surface-enhanced Raman scattering (SERS). In addition, the SERS-based method can remarkably distinguish influenza virus variants with several surface protein point mutations from their parental strain. Principal component analysis (PCA) of the SERS spectra systematically captured the key Raman bands to distinguish the variants. Our results show that the combination of SERS and PCA can be a promising tool for rapid detection of newly emerging mutant viruses without a virus-specific probe.


Assuntos
COVID-19 , Orthomyxoviridae , Vírus , Humanos , Análise Espectral Raman/métodos , Mutação Puntual , Pandemias
7.
Biomacromolecules ; 23(8): 3130-3141, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35451812

RESUMO

Monitoring tumor progression is important for elucidating appropriate therapeutic strategies in response to anticancer therapeutics. To fluorescently monitor the in vivo levels of tumor-specific enzymes, we prepared matrix metalloprotease (MMP)-responsive gold nanoparticle (AuNP) clusters to sense tumor microenvironments. Specifically, AuNPs and quantum dots (QDs) were surface-engineered with two poly(ethylene glycol) [PEG] shells and cyclooctyne moieties, respectively, for the copper-free click reaction. Upon "peeling off" of the secondary shell from the double-PEGylated AuNPs under MMP-rich conditions, shielded azide moieties of the AuNPs were displayed toward the QD, and those two particles were clicked into nanoparticle clusters. This consequently resulted in a dramatic size increase and fluorescence quenching of QDs via fluorescence energy transfer (FRET) due to the molecular proximity of the particles. We observed that FRET efficiency was modulated via changes in MMP levels and exposure time. Cancer cell numbers exhibited a strong correlation with FRET efficiency, and in vivo studies that employed solid tumor models accordingly showed that FRET efficiency was dependent on the tumor size. Thus, we envision that this platform can be tailored and optimized for tumor monitoring based on MMP levels in solid tumors.


Assuntos
Nanopartículas Metálicas , Neoplasias , Pontos Quânticos , Transferência Ressonante de Energia de Fluorescência/métodos , Ouro , Humanos , Microambiente Tumoral
8.
Analyst ; 147(24): 5718-5724, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36373550

RESUMO

A novel surface-enhanced Raman scattering (SERS) immunoassay method based on tyramine signal amplification (TSA) technology triggering the formation of enzyme repeats on an enzyme-linked immunosorbent assay (ELISA) was designed for highly sensitive detection of human chorionic gonadotropin (hCG) using enzymatic biocatalytic precipitation toward o-phenylenediamine (OPD). Initially, a horseradish peroxidase (HRP)-labeled hCG antibody was fixed by the double antibody sandwich method, and then a tyramine-HRP conjugate was used to form HRP repeats by triggering the immobilized HRP on ELISA with the aid of H2O2. In the presence of the target hCG, the HRP repeats carried by the sandwich immune complex catalyzed the oxidation of OPD to produce product molecules with different structures, resulting in changes in the SERS fingerprint spectrum. The analytical performance of the SERS immunoassay was studied in detail using SERS spectral characterization. Under the optimum conditions, the immunosensor displayed a working range from 1 IU L-1 to 16 IU L-1 with a detection limit (LOD) of 0.17 IU L-1 relative to the target hCG. Compared to the traditional SERS immunosensor, a higher detection sensitivity can be obtained. Therefore, this work provides a new strategy for hCG detection and inspiration for the construction of sensitive and efficient immunosensors.


Assuntos
Técnicas Biossensoriais , Análise Espectral Raman , Humanos , Análise Espectral Raman/métodos , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Imunoadsorventes , Peroxidase do Rábano Silvestre/química , Limite de Detecção , Peróxido de Hidrogênio , Gonadotropina Coriônica/análise , Tiramina/química , Ouro/química
9.
Analyst ; 147(4): 597-603, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35040828

RESUMO

A "hotspot"-rich Ag-nanoparticle-decorated three-dimensional polymer substrate was fabricated, exhibiting an excellent surface-enhanced Raman scattering (SERS) activity. 4-Mercaptobenzoic acid (MBA) was selected as a probe molecule for comparing the SERS activity on selected substrates. The proposed detection chip with the adsorption of tetramethylthiuram disulfide (TTD) shows an excellent sensitivity for the quantitative determination of TTD and mercury ions (Hg2+). This chip exhibited a high sensitivity for the trace detection of the targets. Interestingly, we found that the adsorbed TTD is selectively sensitive to Hg2+. The SERS band had a significant frequency shift of 11 cm-1 as the concentration of Hg2+ increased from 10-10 to 10-3 mol L-1. More importantly, the frequency shift of the SERS band exhibited an excellent linear relationship with the concentration of Hg2+, and the determination limit for Hg2+ was 10-10 mol L-1. Furthermore, the proposed detection chip shows great application potential for the determination of pesticides and Hg2+.


Assuntos
Mercúrio , Nanopartículas Metálicas , Polímeros , Análise Espectral Raman , Tiram
10.
Molecules ; 27(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36235052

RESUMO

Target protein degradation has emerged as a promising strategy for the discovery of novel therapeutics during the last decade. Proteolysis-targeting chimera (PROTAC) harnesses a cellular ubiquitin-dependent proteolysis system for the efficient degradation of a protein of interest. PROTAC consists of a target protein ligand and an E3 ligase ligand so that it enables the target protein degradation owing to the induced proximity with ubiquitin ligases. Although a great number of PROTACs has been developed so far using previously reported ligands of proteins for their degradation, E3 ligase ligands have been mostly limited to either CRBN or VHL ligands. Those PROTACs showed their limitation due to the cell type specific expression of E3 ligases and recently reported resistance toward PROTACs with CRBN ligands or VHL ligands. To overcome these hurdles, the discovery of various E3 ligase ligands has been spotlighted to improve the current PROTAC technology. This review focuses on currently reported E3 ligase ligands and their application in the development of PROTACs.


Assuntos
Ubiquitina-Proteína Ligases , Ubiquitina , Ligantes , Proteínas/metabolismo , Proteólise , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
11.
Analyst ; 146(23): 7320-7326, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34762076

RESUMO

A new and simple surface-enhanced Raman scattering (SERS) biosensor based on the tyramine signal amplification (TSA)-triggered formation of horseradish peroxidase (HRP) repeats on a gold sensing chip was designed for the highly sensitive detection of hydrogen peroxide (H2O2). Initially, gold wafers were functionalized with HRP as sensing chips. Then, the HRP immobilized on the chips triggers the TSA reaction to transform the tyramine-HRP conjugate into a tyramine-HRP repeat array. With the aid of the target H2O2, the HRP repeats catalyze the oxidation of o-phenylenediamine (OPD) and produce an enzyme catalytic product with a different chemical structure, thus altering the fingerprint of the SERS spectra from that of OPD. H2O2 can be quantitatively analyzed according to the change in SERS signal intensity. On the basis of the TSA strategy, the proposed method allows the detection of H2O2 with a limit of detection (LOD) of 0.8 × 10-8 M. The as-prepared SERS sensor can achieve high-sensitivity H2O2 detection with a small amount of sample for each analysis. Therefore, this sensor exhibits significant potential for application in bioanalysis.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ouro , Peroxidase do Rábano Silvestre , Peróxido de Hidrogênio , Limite de Detecção , Análise Espectral Raman , Tiramina
12.
Molecules ; 26(4)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33672044

RESUMO

In spite of unique structural, spectroscopic and redox properties, the synthetic variants of the planar, antiaromatic hexaphyrin (1.0.1.0.1.0) derivatives 2, has been limited due to the low yields and difficulty in access to the starting material. A chemical modification of the meso-substituents could be good alternative overcoming the synthetic barrier. Herein, we report a regio-selective nucleophilic aromatic substitution (SNAr) of meso-pentafluorophenyl group in rosarrin 2 with catechol. The reaction afforded benzodioxane fused rosarrin 3 as single product with high yield. The intrinsic antiaromatic character of the starting rosarrin 2 retained throughout the reactions. Clean, two electron reduction was achieved by treatment of 3 with SnCl2•2H2O affording 26π-electron aromatic rosarrin 4. The synthesized compounds exhibited noticeable changes in photophysical and redox properties compared with starting rosarrin 2.


Assuntos
Porfirinas/química , Porfirinas/síntese química , Técnicas Eletroquímicas , Espectrofotometria Ultravioleta , Estereoisomerismo
13.
Analyst ; 145(2): 607-612, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31782435

RESUMO

A simple enzyme-free method based on surface-enhanced Raman scattering (SERS) was developed for the first time to detect H2O2 in food by etching a self-assembled film of silver nanoparticles (Ag NPs) on a glass substrate. H2O2 is able to oxidize Ag NPs to yield Ag+ ions; this process reduces the size of the Ag NPs and ultimately leads to a decrease in the SERS signal of the Raman probe. The intensities of the SERS spectra were strongly correlated with H2O2 concentration, which indicated that the Ag NP self-assembled SERS sensor can be successfully used for the quantitative analysis of H2O2. The main advantage of this SERS sensor is that it can directly detect H2O2 without introducing complex enzymatic reactions. This easy-to-operate and fast-response detection technology has great potential for the sensitive detection of H2O2 in food.


Assuntos
Análise de Alimentos/métodos , Peróxido de Hidrogênio/análise , Nanopartículas Metálicas/química , Prata/química , Análise Espectral Raman/métodos , Humanos , Limite de Detecção
14.
Molecules ; 25(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155919

RESUMO

Quantitative analysis of formaldehyde (HCHO, FA), especially at low levels, in various environmental media is of great importance for assessing related environmental and human health risks. A highly efficient and convenient FA detection method based on surface-enhanced Raman spectroscopy (SERS) technology has been developed. This SERS-based method employs a reusable and soft silver-coated TiO2 nanotube array (TNA) material, such as an SERS substrate, which can be used as both a sensing platform and a degradation platform. The Ag-coated TNA exhibits superior detection sensitivity with high reproducibility and stability compared with other SERS substrates. The detection of FA is achieved using the well-known redox reaction of FA with 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole (AHMT) at room temperature. The limit of detection (LOD) for FA is 1.21 × 10-7 M. In addition, the stable catalytic performance of the array allows the degradation and cleaning of the AHMT-FA products adsorbed on the array surface under ultraviolet irradiation, making this material recyclable. This SERS platform displays a real-time monitoring platform that combines the detection and degradation of FA.


Assuntos
Técnicas Biossensoriais , Formaldeído/análise , Nanotubos/química , Prata/química , Análise Espectral Raman , Titânio/química , Estrutura Molecular , Nanotubos/ultraestrutura , Análise Espectral , Análise Espectral Raman/métodos
15.
Angew Chem Int Ed Engl ; 59(27): 10780-10784, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32166873

RESUMO

Interfaces play an important role in enhancing the energy conversion performance of dye-sensitized solar cells (DSCs). The interface effects have been studied by many techniques, but most of the studies only focused on one part of a DSC, rather than on a complete solar cell. Hence, monitoring the interface evolution of a DSC is still very challenging. Here, in situ/operando resonance Raman (RR) spectroscopic analyses were carried out to monitor the dynamics of the photovoltaic conversion processes in a DSC. We observed the creation of new species (i.e., polyiodide and iodine aggregates) in the photosensitization process. We also obtained molecular-scale dynamic evidence that the bands from the C=C and C=N bonds of 2,2'-bipyridyl (bpy), the S=C=N bonds of the NCS ligand, and photochemical products undergo reasonably strong intensity and frequency changes, which clearly demonstrates that they are involved in charge separation. Furthermore, RR spectroscopy can also be used to quickly evaluate the performance of DSCs.

16.
Mar Drugs ; 17(6)2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31151236

RESUMO

Although collagens from vertebrates are mainly used in regenerative medicine, the most elusive issue in the collagen-based biomedical scaffolds is its insufficient mechanical strength. To solve this problem, electrospun collagen composites with chitins were prepared and molecular interactions which are the cause of the mechanical improvement in the composites were investigated by two-dimensional correlation spectroscopy (2DCOS). The electrospun collagen is composed of two kinds of polymorphs, α- and ß-chitin, showing different mechanical enhancement and molecular interactions due to different inherent configurations in the crystal structure, resulting in solvent and polymer susceptibility. The collagen/α-chitin has two distinctive phases in the composite, but ß-chitin composite has a relatively homogeneous phase. The ß-chitin composite showed better tensile strength with ~41% and ~14% higher strength compared to collagen and α-chitin composites, respectively, due to a favorable secondary interaction, i.e., inter- rather than intra-molecular hydrogen bonds. The revealed molecular interaction indicates that ß-chitin prefers to form inter-molecular hydrogen bonds with collagen by rearranging their uncrumpled crystalline regions, unlike α-chitin.


Assuntos
Quitina/metabolismo , Colágeno/metabolismo , Animais , Quitina/química , Quitina/ultraestrutura , Colágeno/química , Colágeno/ultraestrutura , Cristalização , Técnicas Eletroquímicas , Humanos , Ligação de Hidrogênio , Microscopia Eletrônica de Varredura , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração
17.
Proc Natl Acad Sci U S A ; 113(7): E847-53, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26831090

RESUMO

It is well known that polyelectrolyte complexes and coacervates can form on mixing oppositely charged polyelectrolytes in aqueous solutions, due to mainly electrostatic attraction between the oppositely charged polymers. Here, we report the first (to the best of our knowledge) complexation and coacervation of two positively charged polyelectrolytes, which provides a new paradigm for engineering strong, self-healing interactions between polyelectrolytes underwater and a new marine mussel-inspired underwater adhesion mechanism. Unlike the conventional complex coacervate, the like-charged coacervate is aggregated by strong short-range cation-π interactions by overcoming repulsive electrostatic interactions. The resultant phase of the like-charged coacervate comprises a thin and fragile polyelectrolyte framework and round and regular pores, implying a strong electrostatic correlation among the polyelectrolyte frameworks. The like-charged coacervate possesses a very low interfacial tension, which enables this highly positively charged coacervate to be applied to capture, carry, or encapsulate anionic biomolecules and particles with a broad range of applications.


Assuntos
Bivalves/química , Eletrólitos/química , Animais , Propriedades de Superfície
18.
Molecules ; 24(2)2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30646621

RESUMO

The phase transition of the LiFePO4 and FePO4 in Li-ion cell during charging-discharging processes in the first and second cycles is elucidated by Raman spectroscopy in real time. In situ Raman spectroscopy showed the sudden phase transition between LiFePO4 and FePO4. Principal component analysis (PCA) results also indicated that the structural changes and electrochemical performance (charge-discharge curve) are correlated with each other. Phase transition between LiFePO4 and FePO4 principally appeared in the second charging process compared with that in the first charging process. 2D correlation spectra provided the phase transition mechanism of LiFePO4 cathode which occurred during the charging-discharging processes in the first and second cycles. PCA and 2D correlation spectroscopy are very helpful methods to understand in situ Raman spectra for the Li-ion battery.


Assuntos
Ferro/química , Lítio/química , Transição de Fase , Fosfatos/química , Análise Espectral Raman , Fontes de Energia Elétrica , Eletrodos
19.
Molecules ; 24(3)2019 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-30717362

RESUMO

In this work, we introduced an ordered metal-semiconductor molecular system and studied the resulting surface-enhanced Raman scattering (SERS) effect. Ag-FeS nanocaps with sputtered films of different thicknesses were obtained by changing the sputtering power of FeS while the sputtering power of Ag and the deposition time remained constant. When metallic Ag and the semiconductor FeS are cosputtered, the Ag film separates into Ag islands partially covered by FeS and strong coupling occurs among the Ag islands isolated by FeS, which contributes to the SERS phenomenon. We also investigated the SERS enhancement mechanism by decorating the nanocap arrays produced with different FeS sputtering powers with methylene blue (MB) probe molecules. As the FeS sputtering power increased, the SERS signal first increased and then decreased. The experimental results show that the SERS enhancement can mainly be attributed to the surface plasmon resonance (SPR) of the Ag nanoparticles. The coupling between FeS and Ag and the SPR displacement of Ag vary with different sputtering powers, resulting in changes in the intensity of the SERS spectra. These results demonstrate the high sensitivity of SERS substrates consisting of Ag-FeS nanocap arrays.


Assuntos
Compostos Ferrosos/química , Nanopartículas Metálicas/química , Prata/química , Semicondutores , Análise Espectral Raman , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
20.
Anal Chem ; 90(22): 13159-13162, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30264561

RESUMO

A novel surface-enhanced Raman spectroscopy (SERS) sensor was proposed for an ultrasensitive detection immunoassay based on tyramine signal amplification (TSA) strategy. In this study, an immune sandwich was prepared with a capture antibody and a horseradish peroxidase (HRP)-conjugated antibody upon the addition of a target antigen. In the presence of H2O2, HRP can convert tyramine to a short-lived radical intermediate that forms covalent compounds with aromatic amino acids on the surfaces of proteins. By labeling the tyramine with SERS tags in the form of gold nanoparticles (AuNPs) functionalized with a Raman-active probe (4-mercaptobenzoic acid, 4-MBA), AuNPs@4-MBA was deposited and aggregated near the proteins, so the SERS signal of 4-MBA could be detected and amplified. On the basis of the TSA strategy, the developed SERS-based immunoassay can discriminate concentrations as low as 0.01 ng/mL of the target antigen and exhibited approximately 10 times stronger SERS signal intensity than traditional SERS-based immunoassays. These results demonstrated the application potential of this TSA-based SERS biosensor for the detection of important proteins in biomedical research.


Assuntos
Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Imunoglobulina G/análise , Análise Espectral Raman/métodos , Tiramina/química , Animais , Armoracia/enzimologia , Benzoatos/química , Catálise , Cabras , Ouro/química , Peroxidase do Rábano Silvestre/química , Peróxido de Hidrogênio/química , Imunoglobulina G/imunologia , Limite de Detecção , Nanopartículas Metálicas/química , Camundongos , Coelhos , Compostos de Sulfidrila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA