RESUMO
Motivated by the quest for experimental procedures capable of controlled manipulation of single atoms on surfaces, we set up a computational strategy that explores the cyclical vertical manipulation of a broad set of single atoms on the GaAs(110) surface. First-principles simulations of atomic force microscope tip-sample interactions were performed considering families of GaAs and Au-terminated tip apexes with varying crystalline termination. We identified a subset of tips capable of both picking up and depositing an adatom (Ga, As, Al, and Au) any number of times via a modify-restore cycle that "resets" the apex of the scanning probe to its original structure at the end of each cycle. Manipulation becomes successful within a certain window of lateral and vertical tip distances that are observed to be different for extracting and depositing each atom. A practical experimental protocol of special utility for potential cyclical manipulation of single atoms on a nonmetallic surface is proposed.
RESUMO
The on-surface synthesis of covalently bonded materials differs from solution-phase synthesis in several respects. The transition from a three-dimensional reaction volume to quasi-two-dimensional confinement, as is the case for on-surface synthesis, has the potential to facilitate alternative reaction pathways to those available in solution. Ullmann-type reactions, where the surface plays a role in the coupling of aryl-halide functionalised species, has been shown to facilitate extended one- and two-dimensional structures. Here we employ a combination of scanning tunnelling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and X-ray standing wave (XSW) analysis to perform a chemical and structural characterisation of the Ullmann-type coupling of two iodine functionalised species on a Ag(111) surface held under ultra-high vacuum (UHV) conditions. Our results allow characterisation of molecular conformations and adsorption geometries within an on-surface reaction and provide insight into the incorporation of metal adatoms within the intermediate structures of the reaction.