Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Fluoresc ; 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37460821

RESUMO

A design toward C-C bonded 2,6-bis(1H-1,2,3-triazol-4-yl)-9H-purine and 2-piperidinyl-6-(1H-1,2,3-triazol-4-yl)-9H-purine derivatives was established using the combination of Mitsunobu, Sonogashira, copper (I) catalyzed azide-alkyne cycloaddition, and SNAr reactions. 11 examples of 2,6-bistriazolylpurine and 14 examples of 2-piperidinyl-6-triazolylpurine intermediates were obtained, in 38-86% and 41-89% yields, respectively. Obtained triazole-purine conjugates expressed good fluorescent properties which were studied in the solution and in the thin layer film for the first time. Quantum yields reached up to 49% in DMSO for bistriazolylpurines and up to 81% in DCM and up to 95% in DMSO for monotriazolylpurines. Performed biological studies in mouse embryo fibroblast, human keratinocyte, and transgenic adenocarcinoma of the mouse prostate cell lines showed that most of obtained triazole-purine conjugates are not cytotoxic. The 50% cytotoxic concentration of the tested derivatives was in the range from 59.6 to 1528.7 µM.

2.
Phys Chem Chem Phys ; 25(3): 2411-2419, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36598166

RESUMO

Two new twisted intramolecular charge transfer (TICT) donor-π-acceptor compounds were designed by combining a well-known electron acceptor naphthalimide unit with a classic electron donor dimethylaniline through two types of different rigid linkers. The combined steady-state and time-resolved spectroscopy of molecules in solvents of different polarities in comparison to solid-state solvation experiments of doped polymer matrixes of different polarities allowed distinguishing between solvation and conformation determined processes. The photophysical measurements revealed that non-polar solutions possess high fluorescence quantum yields of up to 70% which is a property of pre-twisted/planar molecules in the excited charge transfer (CT) states. The increase of polarity allows tuning the Stokes shift through all the visible wavelength range up to 8601 cm-1 which is accompanied by a three orders of magnitude drop of fluorescence quantum yields. This is a result of the emerged TICT states as dimethylaniline twists to a perpendicular position against the naphthalimide core. The TICT reaction of molecules enables an additional non-radiative excitation decay channel, which is not present if the twisting is forbidden in a rigid polymer matrix. Transient absorption spectroscopy was employed to visualize the excited state dynamics and to obtain the excited state reaction constants, revealing that TICT may occur from both the Franck-Condon region and the solvated pre-twisted/planar CT states. Both molecules undergo the same photophysical processes, however, a longer linker and thus a higher excited state dipole moment determines the faster excited state reactions.

3.
Angew Chem Int Ed Engl ; 62(4): e202215071, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36413097

RESUMO

Organic ultralong room temperature phosphorescence (RTP), or organic afterglow, is a unique phenomenon, gaining widespread attention due to its far-reaching application potential and fundamental interest. Here, two laterally expanded 9,10-dimesityl-dihydro-9,10-diboraanthracene (DBA) derivatives are demonstrated as excellent afterglow materials for red and blue-green light emission, which is traced back to persistent thermally activated delayed fluorescence and RTP. The lateral substitution of polycyclic DBA scaffold, together with weak transversal electron-donating mesityl groups, ensures the optimal molecular properties for (reverse) intersystem crossing and long-lived triplet states in a rigid poly(methyl methacrylate) matrix. The achieved afterglow emission quantum yields of up to 3 % and 15 %, afterglow lifetimes up to 0.8 s and 3.2 s and afterglow durations up to 5 s and 25 s (for red and blue-green emitters, respectively) are attributed to the properties of single molecules.

4.
Chemistry ; 28(26): e202200496, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35235237

RESUMO

N,N'-disubstituted indigos are photoswitchable molecules that have recently caught the attention due to their addressability by red-light. When alkyl and aryl groups are utilized as the N-substituents, the thermal half-lives of Z isomers can be tuned independently while maintaining the advantageous red-shifted absorption spectra. To utilize these molecules in real-world applications, it is of immense importance to understand how their molecular structures as well as the environment influence their switching properties. To this end, we probed their photoisomerization mechanism by carrying out photophysical and computational studies in solvents of different polarities. The fluorescence and transient absorption experiments suggest for more polar excited and transition states, which explains the bathochromic shifts of absorption spectra and shorter thermal half-lives. On the other hand, the quantum chemical calculations reveal that in contrast to N-carbonyl groups, N-alkyl and N-aryl substituents are not strongly conjugated with the indigo chromophore and can thus serve as a tool for tuning the thermal stability of Z isomers. Both approaches are combined to provide in-depth understandings of how indigos undergo photoswitching as well as how they are influenced by N-substituent and the chemical surroundings. These mechanistic insights will serve as guiding principles for designing molecules eyeing broader applications.


Assuntos
Índigo Carmim , Luz , Fluorescência , Índigo Carmim/química , Estrutura Molecular , Solventes/química
5.
Beilstein J Org Chem ; 18: 497-507, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35601989

RESUMO

The interest in organic materials exhibiting thermally activated delayed fluorescence (TADF) significantly increased in recent years owing to their potential application as emitters in highly efficient organic light emitting diodes (OLEDs). Simple modification of the molecular structure of TADF compounds through the selection of different electron-donating or accepting fragments opens great possibilities to tune the emission properties and rates. Here we present the synthesis of a series of novel pyrimidine-carbazole emitters and their photophysical characterization in view of effects of substituents in the pyrimidine ring on their TADF properties. We demonstrate that electron-withdrawing substituents directly connected to the pyrimidine unit have greater impact on the lowering of the energy gap between singlet and triplet states (ΔE ST) for efficient TADF as compared to those attached through a phenylene bridge. A modification of the pyrimidine unit with CN, SCH3, and SO2CH3 functional groups at position 2 is shown to enhance the emission yield up to 0.5 with pronounced TADF activity.

6.
Phys Chem Chem Phys ; 24(1): 313-320, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34889323

RESUMO

Thermally activated delayed fluorescence (TADF) compounds doped in solid hosts are prone to undergo solvation effects, similar to those in the solution state. Emission peak shifts and changes in emission decay rates usually follow solid-state solvation (SSS). However, here we show that typical SSS behavior in heavily doped TADF films could be of a completely different origin, mistakenly attributed to SSS. Typically, increasing the doping load was found to redshift the emission peak wavelength and enhance the rISC rate. However, more in-depth analysis revealed that SSS actually is negligible and both phenomena are caused by the specific behavior of delayed emission. Increasing the concentration of the TADF compound was shown to enhance the concentration quenching of long-lived delayed fluorescence from conformer states with the largest singlet energy, eventually leading to a gradual redshift of the delayed emission peak wavelength. Concomitantly, the loss of long-lived delayed fluorescence entailed reverse intersystem crossing rate enhancement, though the rate-governing singlet-triplet energy gap was gradually increasing. The observed phenomena are highly unwanted, burdening molecular structure and OLED performance optimization.

7.
J Phys Chem A ; 125(7): 1637-1641, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33576226

RESUMO

The successful development of thermally activated delayed fluorescence (TADF) OLEDs relies on advances in molecular design. To guide the molecular design toward compounds with preferable properties, special care should be taken while estimating the parameters of prompt and delayed fluorescence. Mistakes made in the initial steps of analysis may lead to completely misleading conclusions. Here we show that inaccuracies usually are introduced in the very first steps while estimating the solid-state prompt and delayed fluorescence quantum yields, resulting in an overestimation of prompt fluorescence (PF) parameters and a subsequent underestimation of the delayed emission (DF) yield and rates. As a solution to the problem, a working example of a more sophisticated analysis is provided, stressing the importance of in-depth research of emission properties in both oxygen-saturated and oxygen-free surroundings.

8.
Phys Chem Chem Phys ; 22(45): 26502-26508, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33185211

RESUMO

A comprehensive photophysical study of a series of purines, doubly decorated at C2 and C6 positions with identical fragments ranging from electron acceptor to donor groups of different strengths, is presented. The asymmetry of substitutions creates a unique molecular D-A-D' structure possessing two independent electronic charge transfer (CT) systems attributed to each fragment and exhibiting dual-band fluorescence. Moreover, the inherent property of coordination of metal ions by purines was enriched due to a presence of nearby triazoles used as spacers for donor or acceptor fragments. New molecules present a bidentate coordination mode, which makes the assembly of several ligands with one metal cation possible. This property was exploited to create a new concept of a ratiometric chemical fluorescence sensor involving the photoinduced electron transfer between branches of different ligands as a mechanism of fluorescence modulation.


Assuntos
Transporte de Elétrons , Ligantes , Transporte de Elétrons/fisiologia , Fluorescência , Íons/química , Metais/química , Purinas/química , Eletricidade Estática , Triazinas/química
9.
Phys Chem Chem Phys ; 22(14): 7392-7403, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32215384

RESUMO

Solid state NIR-to-visible photon upconversion (UC) mediated by triplet-triplet annihilation (TTA) is necessitated by numerous practical applications. Yet, efficient TTA-UC remains a highly challenging task. In this work palladium phthalocyanine-sensitized NIR-to-vis solid UC films based on a popular rubrene emitter are thoroughly studied with the primary focus on revealing the impact of t-butyl substitution in rubrene on the TTA-UC performance. The solution-processed UC films were additionally doped with a small amount of emissive singlet sink tetraphenyldibenzoperiflanthene (DBP) for collecting upconverted singlets from rubrene and in this way diminishing detrimental singlet fission. Irrespective of the excitation conditions used, t-butyl-substituted rubrene (TBR) was found to exhibit enhanced TTA-UC performance as compared to that of rubrene at an optimal emitter doping of 80 wt% in polystyrene films. Explicitly, in the TTA dominated regime attained at high excitation densities, 4-fold higher UC quantum yield (ΦUC) achieved in TBR-based films was caused by the reduced fluorescence concentration quenching mainly due to suppressed singlet fission. Under low light conditions, i.e. in the regime governed by spontaneous triplet decay, even though triplet exciton diffusion was obstructed in TBR films by t-butyl moieties, the subsequently reduced TTA rate was counterbalanced by both suppressed singlet fission and non-radiative triplet quenching, still ensuring higher ΦUC of these films as compared to those of unsubstituted rubrene films.

10.
Nanotechnology ; 30(34): 345702, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30995629

RESUMO

Perovskite light converting layers optimization for cost-efficient white light emitting diodes (LED) was demonstrated. High excitation independent internal quantum efficiency (IQE) of 80% and weakly excitation dependent PL spectra suitable for white light generation were obtained in the mixed cation CsxMA1-xPbBr3 perovskite nanocrystal layers with optimal x = 0.3 being determined by effective surface passivation and phase mixing as revealed by x-ray diffraction. Enhancement of the PL homogeneity and the external quantum efficiency (EQE) were secured when using 2,2',2″-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole (TPBi) additive in the layer preparation process. Excitation dependent PL intensity, decay time, and IQE revealed that the high emission efficiency of the layers originates from a dominant radiative localized exciton recombination (130 ns) weakly influenced by the nonradiative free carrier recombination (750 ns). Warm and cool white LEDs with correlated color temperature 3000 K and 5600 K, and color rendering index 82 and 74, respectively, were realized by using the optimized perovskite layers, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) red emitter and a blue LED.

11.
Phys Chem Chem Phys ; 22(1): 265-272, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31808776

RESUMO

Thermally activated delayed fluorescence (TADF) compounds with a flexible donor-acceptor structure suffer from conformational disorder in solid-state, which deteriorates their emission properties as well as OLED performance. Accordingly, TADF materials with predictable solid-state emission properties are highly desirable. In this work, we analyse the relation between the molecular rigidity and solid-state TADF properties. Two TADF compounds, 4,6-bis(2-methyl-4-(10H-phenothiazin-10-yl)phenyl)pyrimidine (PTZ-mPYR) and 1,2,3,4-tetrakis(carbazol-9-yl)-5,6-dicyanobenzene (4CzPN), with similar emission properties in toluene solutions but different rigidity of the molecular structure were systematically studied. The analysis was supplemented by comparison of solid-state TADF properties of PTZ-mPYR with its analogue 4,6-bis(4-(10H-phenoxazin-10-yl)phenyl)pyrimidine (PXZ-PYR), bearing a more sterically constrained planar electron-donor unit. All compounds showed conformational disorder in diluted polymer films; however its extent directly depended on the molecular structure. Large dispersion of singlet-triplet energy gaps resulted in remarkably prolonged TADF lifetime for PTZ-mPYR with a less sterically constrained donor unit. In contrast, weakened conformational disorder in rigid 4CzPN with sterically crowded donor units was shown to ensure rapid TADF decay with only a threefold lower solid-state rISC rate as compared to toluene. Similarly, selection of a more sterically constrained planar electron-donor unit was also shown to be preferable for lowering the conformational disorder. Our findings are important for the future design of compounds with efficient solid-state TADF as well as for the further application in OLEDs with low external quantum efficiency roll-off.

12.
Opt Express ; 25(20): 24604-24614, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-29041405

RESUMO

Complex assemblies of light-emitting polymer nanofibers with molecular materials exhibiting optical gain can lead to important advance to amorphous photonics and to random laser science and devices. In disordered mats of nanofibers, multiple scattering and waveguiding might interplay to determine localization or spreading of optical modes as well as correlation effects. Here we study electrospun fibers embedding a lasing fluorene-carbazole-fluorene molecule and doped with titania nanoparticles, which exhibit random lasing with sub-nm spectral width and threshold of about 9 mJ cm-2 for the absorbed excitation fluence. We focus on the spatial and spectral behavior of optical modes in the disordered and non-woven networks, finding evidence for the presence of modes with very large spatial extent, up to the 100 µm-scale. These findings suggest emission coupling into integrated nanofiber transmission channels as effective mechanism for enhancing spectral selectivity in random lasers and correlations of light modes in the complex and disordered material.

13.
Nanotechnology ; 28(36): 365701, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28628486

RESUMO

Various zinc oxide (ZnO) nanostructures are widely used for photocatalytic antibacterial applications. Since ZnO possesses a wide bandgap, it is believed that only UV light may efficiently assist bacterial inactivation, and diverse crystal lattice modifications should be applied in order to narrow the bandgap for efficient visible-light absorption. In this work we show that even unmodified ZnO nanorods grown by an aqueous chemical growth technique are found to possess intrinsic defects that can be activated by visible light (λ = 405 nm) and successfully applied for total inactivation of various highly resistant bacterial biofilms rather than more sensitive planktonic bacteria. Time-resolved fluorescence analysis has revealed that visible-light excitation creates long-lived charge carriers (τ > 1 µs), which might be crucial for destructive biochemical reactions achieving significant bacterial biofilm inactivation. ZnO nanorods covered with bacterial biofilms of Enterococcus faecalis MSCL 302 after illumination by visible light (λ = 405 nm) were inactivated by 2 log, and Listeria monocytogenes ATCL3C 7644 and Escherichia coli O157:H7 biofilms by 4 log. Heterogenic waste-water microbial biofilms, consisting of a mixed population of mesophilic bacteria after illumination with visible light were also completely destroyed.

14.
Phys Chem Chem Phys ; 19(25): 16737-16748, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28621780

RESUMO

Seven new derivatives of phenanthro[9,10-d]imidazole having differenet substituents at the 1st and the 2nd positions of the phenanthroimidazole moiety were synthesized and characterized. The comparative study of their properties was performed employing thermal, optical, electrochemical and photoelectrical measurements. The properties of the newly synthesized compounds were compared with those of earlier reported derivatives of phenanthroimidazole and several interesting new findings were disclosed. Density functional theory calculations accompanied by optical spectroscopy measurements have shown the possibility of tuning the emission properties (excited-stated decay rate, fluorescence quantum yield, etc.) of phenanthro[9,10-d]imidazole derivatives via attachment of different substituents to the 1st and the 2nd positions. The most polar and bulky substituents linked to the 2nd position were found to have the greatest impact on the emissive properties of compounds causing (i) fluorescence quantum yield enhancement of dilute liquid and solid solutions (up to 97%), (ii) suppression of intramolecular torsion-induced nonradiative excited-state relaxation in rigid polymer films as well as (iii) inhibition of aggregation-promoted emission quenching in the neat films. Most of the studied compunds exhibited ambipolar charge transport character with comparable drift mobilities of holes and electrons. The highest hole and electron mobilities approaching 10-4 cm2 V-1 s-1 were observed for the derivative having a triphenylamino group at the 1st position of the imidazole ring and the phenyl group at the 2nd position. The estimated triplet energies of phenanthro[9,10-d]imidazole compounds were found to be in the range of 2.4-2.6 eV, which is sufficiently high to ensure effective energy transfer to yellow/red emitters.

15.
Phys Chem Chem Phys ; 17(19): 12935-48, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25912324

RESUMO

Deep-blue-emitting benzo[c]fluorene-cored compounds featuring twisted peripheral moieties for suppressed concentration quenching of emission were synthesized and investigated as potential materials for light amplification. This detailed study of the effect of concentration on the spontaneous and stimulated emission, excited-state lifetime and susceptibility to form aggregates obtained for different benzofluorenes, has enabled the understanding of the concentration dependence of the amplified spontaneous emission (ASE) threshold and revealed the optimal concentration for the lowest threshold. The weak concentration quenching accompanied by high fluorescence quantum yield (>40%) and radiative decay rate (>5 × 10(8) s(-1)) have enabled the attainment of the lowest ASE threshold in the neat amorphous film of benzofluorene bearing dihexylfluorenyl peripheral moieties. Aggregate formation was found to negligibly affect the emission efficiency of the benzofluorene films; however, it drastically increased ASE threshold via the enhanced scattering of directional stimulated emission, and thereby implied the necessity to utilize homogeneous glassy films as the lasing medium. Although the bulky dihexylfluorenyl groups at the periphery ensured the formation of glassy benzofluorene films with the ASE threshold as low as 900 W cm(-2) (under nanosecond excitation), they adversely affected carrier drift mobility, which implied a tradeoff between ASE and charge transport properties for the lasing materials utilized in the neat form. Such a low ASE threshold attained in air is among the lowest reported for solution-processed neat films. The low threshold and enhanced photostability of benzofluorenes against fluorene compounds in air show great potential for benzofluorene-cored molecular glasses as active media for lasing applications.

16.
Phys Chem Chem Phys ; 16(15): 7089-101, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24618908

RESUMO

Realization of efficient deep-blue anthracene-based emitters with superior film-forming and charge transport properties is challenging. A series of non-symmetric 9,10-diphenylanthracenes (DPA) with phenyl and pentyl moieties at the 2nd position and alkyl groups at para positions of the 9,10-phenyls were synthesized and investigated. The non-symmetric substitution at the 2nd position enabled to improve film forming properties as compared to those of the unsubstituted DPA and resulted in glass transition temperatures of up to 92 °C. Small-sized and poorly conjugated substituents allowed to preserve emission in the deep blue range (<450 nm). Substitution at the 2nd position enabled to achieve high fluorescence quantum yields (up to 0.7 in solution, and up to 0.9 in the polymer host), although it caused an up to 10-fold increase in the intersystem crossing rate as compared to that of the unsubstituted DPA. Further optimization of the film forming properties achieved by varying the length of the alkyl groups attached at the 9,10-phenyls enabled to attain very high hole drift mobilities (∼5 × 10(-3)-1 × 10(-2) cm(2) V(-1) s(-1)) in the solution-processed amorphous films of the DPA compounds.


Assuntos
Antracenos/química , Teoria Quântica , Eletroquímica , Modelos Moleculares , Estrutura Molecular
17.
Chemistry ; 19(44): 15044-56, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24105955

RESUMO

Star-shaped charge-transporting materials with a triphenylamine (TPA) core and various phenylethenyl side arm(s) were obtained in a one-step synthetic procedure from commercially available and relatively inexpensive starting materials. Crystallinity, glass-transition temperature, size of the π-conjugated system, energy levels, and the way molecules pack in the solid state can be significantly influenced by variation of the structure of these side arm(s). An increase in the number of phenylethenyl side arms was found to hinder intramolecular motions of the TPA core, and thereby provide significant enhancement of the fluorescence quantum yield of the TPA derivatives in solution. On the other hand, a larger number of side arms facilitated exciton migration through the dense side-arm network formed in the solid state and, thus, considerably reduces fluorescence efficiency by migration-assisted nonradiative relaxation. This dense network enables charges to move more rapidly through the hole-transport material layer, which results in very good charge drift mobility (µ up to 0.017 cm(2) V (-1) s(-1)).

18.
J Phys Chem Lett ; 13(7): 1839-1844, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35174704

RESUMO

Time-resolved emission spectra of thermally activated delayed fluorescence (TADF) compounds in solid hosts demonstrate significant temporal shifts. To explain the shifts, two possible mechanisms were suggested, namely, slow solid-state solvation and conformational disorder. Here we employ solid hosts with controllable polarity for analysis of the temporal dynamics of TADF. We show that temporal fluorescence shifts are independent of the dielectric constant of the solid film; however, these shifts evidently depend on the structural parameters of both the host and the TADF dopant. A ≤50% smaller emission peak shift was observed in more rigid polymer host polystyrene than in poly(methyl methacrylate). The obtained results imply that both the host and the dopant should be as rigid as possible to minimize fluorescence instability.

19.
ACS Appl Mater Interfaces ; 12(9): 10727-10736, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32020805

RESUMO

Thermally activated delayed fluorescence (TADF) materials, combining high fluorescence quantum efficiency and short delayed emission lifetime, are highly desirable for application in organic light-emitting diodes (OLEDs) with negligible external quantum efficiency (EQE) roll-off. Here, we present the pathway for shortening the TADF lifetime of highly emissive 4,6-bis[4-(10-phenoxazinyl)phenyl]pyrimidine derivatives. Tiny manipulation of the molecular structure with methyl groups was applied to tune the singlet-triplet energy-level scheme and the corresponding coupling strengths, enabling the boost of the reverse intersystem crossing (rISC) rate (from 0.7 to 6.5) × 106 s-1 and shorten the TADF lifetime down to only 800 ns in toluene solutions. An almost identical TADF lifetime of roughly 860 ns was attained also in solid films for the compound with the most rapid TADF decay in toluene despite the presence of inevitable conformational disorder. Concomitantly, the boost of fluorescence quantum efficiency to near unity was achieved in solid films due to the weakened nonradiative decay. Exceptional EQE peak values of 26.3-29.1% together with adjustable emission wavelength in the range of 502-536 nm were achieved in TADF OLEDs. Reduction of EQE roll-off was demonstrated by lowering the TADF lifetime.

20.
Chem Commun (Camb) ; 55(13): 1975-1978, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30681676

RESUMO

Large vibronic coupling between the local and charge-transfer triplet states is required for efficient reverse intersystem crossing in TADF compounds. This is ensured by low steric hindrance between donor and acceptor molecular units. However, flexible molecular cores show large conformational disorder and emission wavelength instability in solid films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA